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Abstract—Machine learning (ML) has achieved huge success in recent years, but

is also vulnerable to various attacks. In this article, we concentrate on membership

inference attacks and propose Aster, which merely requires the target model’s

black-box API and a data sample to determine whether this sample was used to

train the given ML model or not. The key idea of Aster is that the training data of a

fully trained ML model usually has lower prediction sensitivities compared with that

of the non-training data (i.e., testing data). Less sensitivity means that when

perturbing a training sample’s feature value in the corresponding feature space,

the prediction of the perturbed sample obtained from the target model tends to be

consistent with the original prediction. In this article, we quantify the prediction

sensitivity with the Jacobian matrix which could reflect the relationship between

each feature’s perturbation and the corresponding prediction’s change. Then we

regard the samples with a lower as training data. Aster can breach the membership

privacy of the target model’s training data with no prior knowledge about the target

model or its training data. The experiment results on four datasets show that our

method outperforms three state-of-the-art inference attacks.

Index Terms—Machine learning, membership inference attack, prediction sensitivity,

Jacobianmatrix
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1 INTRODUCTION

MACHINE learning (ML) has been booming over the past years due
to the increasing computing power and various types of data.
However, many researchers have discovered that ML models are
vulnerable to many kinds of attacks recently, including adversarial
attacks [1], [2], model stealing attacks [3], model inversion
attacks [4], and privacy violation attacks [5].

In this article, we focus on membership inference attacks (MIA),
whose goal is to determine whether a sample belongs to a given
model’s training set [6]. MIAs could seriously endanger a model’s
data security. For example, a bank releases an ML model that can
predict people’s credit rating. If we know that one person’s profile
was used to train this model, we could infer that this person is
more likely to be a customer of this bank.

Most MIAs require prior knowledge to perform MIAs. A part of
MIAs require the target model’s structure [6], [7], [8] or the target
model’s parameters [9]. Some works require access to the model’s
training process such that they could obtain the training loss of the

training data [10]. Besides, there are some works that require the
training samples or the statistical information of the data distribu-
tion [11]. Nevertheless, to construct a practicable ML model, devel-
opers usually have to put great efforts, including data collection,
data cleaning, model selection, and model training. So in order to
protect their benefits, most ML models are deployed as a service
with only black-box access. In practice, the Internet giants includ-
ing Google AI Platform1 and Amazon ML2 also provide their only
provide black-box API of the ML models that are deployed on their
servers. Black-box API means that we can only send the input sam-
ple to the target model and receive the corresponding output pre-
diction. Therefore, many MIA methods are usually not applicable
to the black-box scenarios.

In this article, we present a novel MIA dubbed Aster, which
merely requires the perturbation of the target record in its feature
space and the black-box prediction interface of the target ML
model. Consistent with existing MIAs [6], [8], [12], we only con-
sider attacks against the prediction process in the entire ML pipe-
line and ignore the parts of data preprocessing and anomaly
detection before sending the inputs to ML models. Aster is based
on the observation that a trained ML model usually is lesser sensi-
tive to the feature value perturbations on its training samples com-
pared with the non-training samples. In general, with the training
process going on, the ML model will have more and more confi-
dence in the predictions of the training data. When the training
process is finished, the trained model usually has high robustness
to different inputs in the neighborhood of its training data, or in
other works, the prediction sensitivity. Consequently, with respect
to a fully trained ML model, the perturbation to training samples
would not cause a significant change to the model’s prediction out-
put. However, the non-training samples would have a higher sen-
sitivity with respect to the model that they did not participate on
the contrary. As such, by leveraging the prediction sensitivity dif-
ference between the data that the target model trained on versus
the model sees for the first time, Aster can perform the inference
attacks.

Although the basic idea of Aster is not complicated, we still con-
front two major challenges when we implement it. The first chal-
lenge is how to quantify a sample’s prediction sensitivity with
respect to a given ML model. Therefore, we propose a simple
method to quantify the prediction sensitivity: we first add a pertur-
bation to the target sample and then derive the changes in the mod-
el’s output. However, the output changes corresponding to
different degrees of perturbations are difficult to compare directly.
In order to achieve a unified measurement, we use the derivative
of a model’s prediction with respect to the input to capture the sen-
sitivity. Since an ML model’s input and output usually have a large
number of dimensions, we obtain the model output’s partial deriv-
atives in respect of each feature and then combine all the deriva-
tives into a matrix, which coincidentally is the Jacobian matrix, to
measure the sensitivity of the target sample.

Another challenge we met is that how to launch the attack for a
single sample. Since we do not have the ground truth for the target
samples’ membership property, Aster only can leverage the unsu-
pervised algorithm to divide the samples into two groups. How-
ever, existing unsupervised clustering algorithms can not be
performed on the training dataset with only one sample. To solve
this problem, we manually generate some samples by adding noise
to the original sample. The noisy samples are not likely to be used
in the training process of the target models, so we could utilize

� Lan Liu is with the National Engineering Research Center for Educational Big Data,
Central China Normal University, Wuhan, Hubei 430079, China.
E-mail: lanliu@mail.ccnu.edu.cn.

� Yi Wang, Kai Peng, and Chen Wang are with the Hubei Key Laboratory of Smart
Internet Technology, School of Electronic Information and Communications, Huaz-
hong University of Science and Technology, Wuhan 430074, China.
E-mail: {wangyiee, pkhust}@hust.edu.cn, cwangwhu@gmail.com.

� Gaoyang Liu is with the Hubei Key Laboratory of Smart Internet Technology, School
of Electronic Information and Communications, Huazhong University of Science and
Technology, Wuhan 430074, China, and also with the School of Computing Science,
Simon Fraser University, Burnaby, BC V5A 1S6, Canada. E-mail: liugaoyang@hust.
edu.cn.

Manuscript received 29 July 2021; revised 30 May 2022; accepted 2 June 2022. Date of
publication 10 June 2022; date of current version 13 May 2023.
This work was supported in part by the National Natural Science Foundation of China
under Grants 61872416, 62171189, and 62002104; and in part by the Key Research and
Development Program of Hubei Province under Grant 2020BAB120.
(Corresponding author: Gaoyang Liu.)
Digital Object Identifier no. 10.1109/TDSC.2022.3180828

1. https://cloud.google.com/ai-platform
2. https://aws.amazon.com/machine-learning

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 3, MAY/JUNE 2023 2341

1545-5971 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 02,2023 at 09:25:33 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0948-1627
https://orcid.org/0000-0002-0948-1627
https://orcid.org/0000-0002-0948-1627
https://orcid.org/0000-0002-0948-1627
https://orcid.org/0000-0002-0948-1627
https://orcid.org/0000-0003-2566-9360
https://orcid.org/0000-0003-2566-9360
https://orcid.org/0000-0003-2566-9360
https://orcid.org/0000-0003-2566-9360
https://orcid.org/0000-0003-2566-9360
https://orcid.org/0000-0001-9910-4237
https://orcid.org/0000-0001-9910-4237
https://orcid.org/0000-0001-9910-4237
https://orcid.org/0000-0001-9910-4237
https://orcid.org/0000-0001-9910-4237
https://orcid.org/0000-0003-1963-4954
https://orcid.org/0000-0003-1963-4954
https://orcid.org/0000-0003-1963-4954
https://orcid.org/0000-0003-1963-4954
https://orcid.org/0000-0003-1963-4954
mailto:lanliu@mail.ccnu.edu.cn
mailto:wangyiee@hust.edu.cn
mailto:pkhust@hust.edu.cn
mailto:cwangwhu@gmail.com
mailto:liugaoyang@hust.edu.cn
mailto:liugaoyang@hust.edu.cn


these samples to fit the requirement of the clustering algorithm.
The details would be present in Section 4.3.

Our major contributions are summarized as follows:

� We present Aster, an MIA against ML models merely
requiring the black-box prediction access, based on the
observation that a trained ML model usually is less sensi-
tive to feature space’s perturbation on its training samples.

� We leverage the Jacobian matrix, which is composed of the
relationship between the feature values of the input sample
and the output prediction of the target model, to capture a
given sample’s prediction concerning the target model,
and design an inference attack on the basis of the sensitiv-
ity difference between the training and testing data.

� We evaluate the performance of Aster against four differ-
ent types of ML models on four datasets and then compare
it with three existing MIAs.3 Merely with the black-box
interface of the target models, Aster could achieve a mean
precision of 0.601 and a mean recall of 0.775, which are
much higher than those of existing methods.

2 RELATED WORK

2.1 Membership Inference Attacks

The first MIA against ML models is proposed by Shokri et al. [6].
They built several local shadow models to mimic the prediction
behavior of the target model and then make use of the shadow
models’ outputs to train a set of attack models. This work requires
prior knowledge of both the target model’s structure, training set-
tings, or the training platform. Afterward, Salem et al. [12] showed
that only one shadow model and one attack model would be
enough to perform MIAs. However, this work still requires prior
knowledge of the target model’s training data. Li et al. [13] pro-
posed an instance-probability attack. It trains several shadow mod-
els, and then extracts the membership feature with shadow
models’ predictions.

Besides leveraging shadow models, some works leverage other
information of the target model to perform MIAs. For example,
Yeom et al. [10] leveraged the average loss of all training data to
perform the attacks. Their work requires all the training data. Wu
et al. [9] computed the membership probability with the target
model’s parameters and an auxiliary dataset that contains samples
from the dataset and ground truth membership label. Then they
set a threshold to distinguish the members from the non-members
of the training data. Nasr et al. [8] extracted a membership score
for the target model based on the model’s activations, predictions,
and losses. This work requires prior knowledge of the target mod-
el’s structure and parameters. Leino et al. [14] built their attack
model by deriving a set of parameters describing the use of special
features. This work requires the internal structure of the target
model. Hui et al. [15] proposed an MIA, called BlindMI. Their
attack probes the target model and extracts membership semantics
via differential comparison.

Recent works focus on a more practical scenario in which the
target model only outputs the predicted label. Choquette-Choo
et al. [16] proposed the first label-only MIAs. Their attacks evaluate
the robustness of a model’s predicted labels under perturbations to
obtain a fine-grained membership signal. Li et al. [17] also pre-
sented label-only MIAs. They proposed two types of decision-
based attacks named transfer-attack and boundary-attack respec-
tively. Transfer-attack works under the scenario that the adversary
has a dataset (called shadow dataset) that comes from the same dis-
tribution as the target model’s training set. Then they construct
some shadow models to launch a membership inference attack

locally. Boundary-attack does not require the shadow dataset. This
attack adds noises to the target sample and attempts to change its
label predicted by the target model. Then by measuring the
amount of added noise, the adversary can whether the target sam-
ple was used to train the target model or not.

2.2 Applications of Jacobian Matrix

Some works that discuss the security of machine learning leverage
the Jacobian matrix. Clements et al. [18] found a way to insert a
backdoor into a trained neural network to make it malfunction by
making use of the Jacobian matrix. Jakubovitz et al. [19] proposed
a novel method to improve the robustness of neural networks by
using the Frobenius norm of the Jacobian of the network. Novak
et al. [20] discussed the sensitivity and generalization in neural net-
works, they use the norm of the Jacobian matrix as the metric to
measure the generalization of the networks. In other fields, some
works use the Jacobian matrix to help to analyze their models.

Recently, Chen et al. [21] proposed a novel Jacobian-matrix-
adaption (JMA) method for the tracking control of robot manipula-
tors via the zeroing dynamics. Their solution based on the JMA
method transforms the internal, implicit, and unmeasurable model
information to the external, explicit, and measurable input-output
relationships. Pope et al. [22] used the Jacobian matrix to analyze
multispecies models. They calculate the Jacobian matrix of long-
term steady-state catch by species concerning the fishing mortality
relative to status quo levels on all species. Using this method is
possible to compare different model estimations of fishing mortal-
ity rate changes needed to approach yield-related management
goals.

Jacobian matrix has been widely deployed in many different
fields. It helps to analyze how a system’s output reacts when some
changes occur to the input. In this article, we leverage the Jacobian
matrix to measure the sensitivity for the target model to different
samples. Then we compute norms of the Jacobian matrix to divide
the target samples into the member and non-member groups.

3 MOTIVATION

Aster leverages the observation that the Jacobian matrix of the
training samples usually has a smaller norm compared with that of
the non-training samples. Therefore, to solidify our observation
and prove the feasibility of Aster, we conduct several experiments
on three datasets in this section.

To study how the Jacobian matrix distributes differently for
samples from the target model’s training set and those that are not,
we trained several target models with the standard training pro-
cess. For every target model, we have 100 samples from the testing
set and 100 samples from the training set. Then we approximate
the Jacobian matrix norm for these samples(about approximation
methods, please refer to Section 4) and compare the mean norm.
The results are shown in Table 1. The results are perfectly consis-
tent with our motivation. For every target model, the amplitude of
norms varies for different target models, but the mean Jacobian

TABLE 1
Mean Jacobian Matrix Norm

Setting Norms of Jacobian Matrix

Dataset Model Training Data Testing Data

Adult NN 130.736 148.627
Adult LR 139.405 159.848
Bank NN 134.300 179.274
Bank LR 143.877 147.601
MNIST NN 13.346 35.33
MNIST LR 99.623 126.383

3. Our code is available at https://github.com/Wangyiiiiii/Aster
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matrix norms of samples from the training set are strictly less than
the mean jacobian matrix norms of samples from the testing set.
Furthermore, we observe how the Jacobian matrix norm of samples
is distributed for four different target models. The results are
shown in Fig. 1. It shows that the distribution of the Jacobian
matrix norms of samples from the training set are generally lower
than that of testing set.

Consequently, from the preliminary experiments, we can see that
the sample in a model’s training set is less sensitive to perturbations.
The prediction sensitivity can be captured by the Jacobianmatrix of a
given sample with respect to theMLmodel. In addition, we also find
that the norm of the Jacobian matrix is consistent with the prediction
sensitivity. As a consequence, we use the norm of the Jacobianmatrix
tomeasure the prediction sensitivity of the target sample.

4 DESIGN OF ASTER

4.1 Threat Model

The goal of Aster is to determine whether a sample was used to
train the target model or not. Aster does not presume any prior
information about the target model or its training data. In other
words, the adversary that we consider in Aster only has the black-
box API of the target model. The details of our threat model are
described below.

4.1.1 Target Model

In this article, the target model represents the victim whose train-
ing data is under attack. We concentrate on the classification ML
models. For the target sample, we input it to the target model M,
and the target model will return the prediction probability vector.
Each value in the vector represents the probability that the target
sample is predicted to belong to the corresponding category by the
target model. The sum of the probability vector should be exactly
equal to 1.0. We formalize the above procedure as follows: y ¼
MðxxÞ, where xx is the input sample, and y is the predicted probabili-
ties vector.M here represents the target model’s black-box API.

4.1.2 Priori Knowledge of Aster

We consider a more practical adversary who only has the black-
box access to the target model. This assumption limits our attack,
that is, we can not obtain the information about target model’s
structure, type, parameters, training algorithm, and settings, as
well as its training data’s statistics. Therefore, the only information
we can obtain from the target model is the prediction probability
vector of a given input.

4.1.3 The Capability of Aster

The only interaction allowed between the adversary and the target
model M is to query M with a sample xx and then get the

prediction output

MðxxÞ ¼ ½y1; y2; . . . ; yc; . . . ; yjCj�; (1)

where C is the set of class labels that the target model can take, and
yc is the probability that the input sample belongs to class c. The
only information the adversary can receive from the target model
M is the prediction probability vector.

4.1.4 The Goal of Aster

Given the target model M and a target sample xxt, the adversary
attempts to determine whether xxt is fromM’s training set or not

Aðxxt;MÞ ! In=Out: (2)

A is the abstract for the adversary. It takes M and xxt as input and
outputs two kinds of labels. In means that xxt is from M’s training
set whileOut has the opposite meaning.

4.2 Methodology of Aster

Given a target sample xxt and the target model M with only black-
box access, we are interested in whether xxt was used to train M or
not. Aster first approximates the Jacobian matrix for xxt and derives
the prediction sensitivity with respect to M. Then Aster clusters
the target samples according to the sensitivity and thus determines
whether xxt is from M’s training set or not. Therefore, there are
mainly two steps in Aster to perform MIAs (c.f. Fig. 2): (1) Jacobian
Matrix Approximation and (2) Membership Inference. Next, we will
elaborate on each step.

4.2.1 Jacobian Matrix Approximation

An ML model can be regarded as a function M : Rn ! Rm that
maps n-dimensional vector xx 2 Rn to m-dimensional output yy 2
Rm. Then the Jacobian matrix of M is defined to be an m � n
matrix, whose element located in ith row and jth column is Jij ¼
@fi
@xj

(i 2 ½1; 2; . . . ; n� and j 2 ½1; 2; . . . ; m�)

Jðxx;MÞ ¼ @MðxxÞ
@x1

� � � @MðxxÞ
@xn

h i
¼

@y1
@x1

� � � @y1
@xn

..

. . .
. ..

.

@ym
@x1

� � � @ym
@xn

2
6664

3
7775; (3)

where yy ¼ MðxxÞ. The input sample is xx ¼ ½x1; x2; . . . ; xn�, and the
corresponding prediction is yy ¼ ½y1; y2; . . . ; ym�. @yi

@xj
represents the

relationship between the change of the input sample’s ith feature
value and the change of the prediction probability that this sample
belongs to jth class.

From the definition of the Jacobian matrix, we can see that the
matrix is made up of a series of first-order partial derivatives. Even
we do not have the internal states of function M, we still can
approximate these derivatives calculating the numerical differenti-
ation with the following equation:

@yj
@xi

� Mðxxþ �Þ �Mðxx� �Þ
2�

; (4)

where � is a small value added to the ith feature value of the input
sample.

Fig. 1. The distribution of Jacobian matrix norm (The norms are scaled with the
max for better visualization).

Fig. 2. Overview of aster.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 3, MAY/JUNE 2023 2343

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 02,2023 at 09:25:33 UTC from IEEE Xplore.  Restrictions apply. 



For the target sample xxt whose membership property we are
interested in, we add � to (resp. minus � from) the ith feature value
of the target sample and get two modified samples. Then we query
the target model with the two modified samples, and derive the
partial derivatives of ith feature with respect to the target model:
@MðxxÞ
@xi

¼ ½@y1
@xi

; @y2
@xi

� � � @ym
@xi

�. We repeat the above process for each feature
in xx successively and combine the partial derivatives into the Jaco-
bian matrix.

Now that we have the approximation of the Jacobian matrix
which is defined as Jðxx;MÞ for clarity. Then we need to extract the
prediction sensitivity of the target sample with respect to the target
model. Following Novak et al. [20], we make use of L-2 norm of
Jðxx;MÞ to represent the prediction sensitivity for the target sample.
For am� nmatrix A, the L-2 norm of A can be computed by

Ak k2¼
 Xm

i¼1

Xn
j¼1

aij
�� ��2!1

2

; (5)

where i and j are the row number and the column number of the
matrix element ai;j, respectively.

4.2.2 Membership Inference

With the prediction of the target sample (i.e., the norm of the Jaco-
bian matrix approximation Jðxx;MÞ), we can determine whether
the target sample is from the target model’s training set or not. Our
work is based on the observation that ML models usually exhibit
less sensitivity concerning the prediction behavior on the training
data [20]. The other key observation is that the distribution of the
L-2 norm of the Jacobian matrix between the training and testing
data has been illustrated in the previous section. Based on the
above preliminaries, we could find that the prediction sensitivity
of samples from the training set is generally lower than that of the
samples from the testing set.

It comes naturally that we can leverage an unsupervised clus-
tering method to group a set of target records into 2 clusters and
then determine the cluster with a lower mean sensitivity as the
members of the M’s training set. However, through our experi-
ments, we find that Aster may perform even better when the clus-
ter number is larger. Therefore, we try different numbers of
clusters and set the number to 6 based on the average attack perfor-
mance against different models and dataset. We compared several
clustering algorithms including K-Means, Spectral Clustering, and
DBSCAN. The Spectral Clustering obtains the best performance in
our experiments, therefore we finally decided to use the spectral
clustering algorithm to construct the attack clustering model.

When we implement Aster, we use a simple trick to get better
performance. At the inference stage, we first cluster the samples
into three or more groups, and then order the groups by the aver-
age norm. We try different numbers of clusters and record the cor-
responding attack performance of Aster. From the results, we find
that the performance generally improves first and then declines as
the number of clusters increases. Empirically, we decide to use 6
clusters. Finally, we predict that the groups with smaller average
norm are from the target model’s training set and others are not.

4.3 Discussion: Aster Against Single Target Sample

The above methodology of Aster is designed under the scenario
that the adversary has a suspicious dataset consisting of multiple
target samples grabbed from the training and testing set of the tar-
get model. With this suspicious dataset, Aster could infer the mem-
bership property of the target records by clustering the Jacobian
matrix norms (i.e., prediction sensitivity) into two groups. If the
adversary can merely get a single target sample, our attack could
fail since existing unsupervised clustering algorithms can not be
performed on the training dataset with only one sample.

To tackle this problem, we first duplicate the target sample mul-
tiple times and then add some random noises to each duplication.
The majority of the noised duplications never participate in the
training process of the target model. Therefore, we first generate
the local samples around the target sample. We select a part of the
features of xxt uniformly at random and perturb the value of these
features. For the numerical features, we directly add random noise
to the original feature values. For the categorical features, we ran-
domly choose another label from the range that this feature can
take. After perturbing the duplications, we calculate the Jacobian
matrix for both xxt and its perturbed duplications.

Next, we can directly reuse the same clustering method in Sec-
tion 4.2 to infer the membership property of xxt. If the target sample
is from the target model’s training set, the Jacobian norms of per-
turbed duplications should be larger than the Jacobian norm of the
target sample. Else if the target sample is not from the target mod-
el’s training set, then some perturbed duplications may get close to
the samples from the target model’s training set. The Jacobian
norm of the target sample is more likely to be divided into the
group with a larger mean Jacobian norm. At the end, we use the
same criteria as discussed in Section 4.2.2 to determine the target
sample’s membership property.

5 PERFORMANCE EVALUATION

5.1 Experiment Setup

5.1.1 Datasets

To evaluate the performance of Aster, we use four public bench-
mark datasets in this article. These datasets include UCI Adult,4

Purchase,5 MNIST,6 and Bank.7 Because Purchase dataset does not
have any class label, we adopt the labeling method of the works of
Shokri et al. [6] and Salem et al. [12]. Specifically, we leverage the K-
Means algorithm to cluster the samples into 100 groups and each
cluster corresponds to a style of purchase paternal. Then the cluster
results would serve as the ground truth label of Purchase dataset. In
our experiments, we randomly select 10,000 samples from each
dataset to constitute the training data for the target model.

5.1.2 Target Models

To evaluate the performance of our MIA thoroughly, we use four
different ML algorithms to train the target models, including ran-
dom forest (RF), neural networks (NN), logistic regression (LR),
and support vector machine (SVM). Since we assume the target
model is deployed as black-box, we only make use of a prediction
interface of the target model once its training process is finished.

5.1.3 Evaluation Metrics

In our experiments, we mainly make use of two standard metrics
precision and recall to evaluate the performance of Aster. Precision
presents the proportion of the data samples predicted as members
of the training dataset that are indeed in the target model’s training
set. Recall presents the fraction of the training samples that we can
correctly infer as the training set’s samples. In other words, preci-
sion measures the attack accuracy while recall measures the attack
coverage. We also used F1-score when we study the impact of dif-
ferent choices for epsilon. F1-score could convey the balance
between the precision (i.e., attack accuracy) and the recall (i.e.,
attack coverage).

4. https://archive.ics.uci.edu/ml/datasets/Adult
5. https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
6. http://yann.lecun.com/exdb/mnist/
7. https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
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5.1.4 Comparison Methods

We compare our attack with the following three MIAs:
Shokri et al. [6] This MIA first trains several shadow models

which have identical algorithms and structure as the target model
to simulate target models’ prediction behavior. Then it trains multi-
ple attack models with the shadow models’ outputs to perform
MIA.

ML-Leaks. [12] This MIA leverages several different ML algo-
rithms to train a set of sub-models, and then combines these sub-
models as one shadow model. In the end, it trains an attack model
the same way as Shokri et al.’s work.

Nasr et al. [8] This MIA leverages an auto-encoder for extracting
the membership property of the target data and then trains an
unsupervised cluster model to infer which sample is in the target
model’s training set.

In the following experiments, we optimize the parameters of
models for all the methods. We also set the number of samples that
are from the target model’s training is the same as the number of
samples that are from the testing set, thus the baseline of inference
attack accuracy is 50%.

5.2 Choice of Epsilon

One key step of our MIA is to derive the Jacobian matrix approxi-
mation of the target sample with respect to the target model.
According to Eq. (4), we know that different � will affect the results
of the approximation of the Jacobian matrix and then degree the
performance of Aster. Therefore, we need to select a proper value
of � to derive the approximation of the Jacobian matrix with respect
to the given MLmodel. Therefore, we perform the inference attacks
against 20 different target models with different values of �, rang-
ing from 1e-3 to 1e-9. In order to achieve a balance between accu-
racy and recall, we use the F1 score as the metric to determine the
value of �.

The experiment results are shown in Fig. 3. For RF models, the
F1 score of our attacks increases from 0.637 to 0.724 as � varies from
1e-3 to 1e-6, and then keeps stable when � decreases to 1e-7. Finally,
the F1 score decreases to 0.687 when � is set to 1e-9. For NNmodels,
the F1 score increases from 0.636 to 0.654 as � decreasing from 1e-3
to 1e-4, and then stays all the same for the rest value choices of �.
For LR models, the attack performance of Aster is not affected by
the different choice of � at all. The F1 score can achieve a mean
value of 0.663 for the whole time. For SVM models, Aster could
achieve a mean F1 score of 0.643 as � varying from 1e-3 to 1e-8.
Then the F1 score decreases to 0.618 when we set � to 1e-9. Finally,
for DT models, Aster could achieve a mean F1 score of 0.650 when
� varies from 1e-3 to 1e-7.

According to the experiment results in this part, we find that
when the value of � equals to 1e-6, Aster could achieve the accept-
able performance. As a consequence, we uniformly set � to 1e-6 in
the rest experiments.

5.3 Performance of Aster

We first evaluate the performance of Aster, and the experiment
results are summarized in Table 2. The objective of Aster is to infer
the members of the target model’s training data. Therefore, we
evaluate the performance of Aster by executing it against four
types of ML models. In addition, we also compare our attack with
three existing works of MIAs.

For the four kinds of target models, we can see that Aster per-
forms better than Shokri et al.’s work, ML-Leaks, and Nasr et al.’s
work. Aster achieves a mean attack precision of 0.601 among all
target models, which is 9.8%, 8.3%, and 9.5% higher than the three
compared methods, respectively. As for the attack recall, the mean
recall of Aster is 0.775, which is 13.7%, 16.2%, 19.2% higher than
the three comparison methods, respectively.

Specifically, we first discuss the precision results achieved by
Aster and comparison methods. For RF models, Aster achieves a
mean precision of 0.609, which is better than all comparisons. It is
5.1% higher than Shokri et al.’s work, 7.8% higher than ML-Leaks,
and 11.2% higher than Nasr et al.’s work. As for NN models, the
mean precision of Aster is 0.604, which is also the highest among
the comparisons. It is 12.1%, 8.9%, 13.6% higher than others,
respectively. Third, for LR models, Aster achieves 0.595 mean pre-
cision, which is 13.6%, 8.9%, 4.3% higher than each comparison
respectively. For SVM models, the mean precision of Aster is 0.594.
That means Aster is also the highest among the four attack meth-
ods. And it surpasses the comparison methods by 8.3%, 7.6%, and
6.6%, respectively.

As for the recall metric, the details of the experiment results are
elaborated as follows. For RF models, Aster achieves a mean attack
recall of 0.899, which is 35.9%, 27.9%, and 19.9% higher than the
three comparison methods respectively. As for NN models, the

Fig. 3. The choice of epsilon.

TABLE 2
Attack Performance Comparisons

Target Model LR RF NN SVM

Dataset Adult Bank MNIST Purchase Adult Bank MNIST Purchase Adult Bank MNIST Purchase Adult Bank MNIST Purchase

Metric Attack Precision
Shokri et al. 0.571 0.476 0.625 0.562 0.375 0.536 0.500 0.520 0.456 0.511 0.538 0.333 0.500 0.545 0.500 0.500
ML-Leaks 0.575 0.487 0.562 0.500 0.481 0.222 0.533 0.636 0.454 0.333 0.571 0.666 0.523 0.520 0.542 0.486
Nasr et al. 0.583 0.511 0.428 0.466 0.522 0.478 0.578 0.388 0.500 0.477 0.733 0.500 0.692 0.500 0.485 0.433
Aster 0.615 0.585 0.633 0.605 0.714 0.571 0.612 0.520 0.678 0.585 0.533 0.586 0.642 0.571 0.558 0.605

Metric Attack Recall
Shokri et al. 0.798 0.410 0.605 0.361 0.117 0.881 0.800 0.520 0.836 0.922 0.843 0.040 1.000 0.964 0.562 0.562
ML-Leaks 0.922 0.762 0.722 0.800 0.521 0.800 0.962 0.279 0.800 0.779 0.643 0.800 0.881 1.000 0.762 0.723
Nasr et al. 0.839 0.921 0.477 0.563 0.921 0.878 0.439 0.282 0.762 0.836 0.439 0.762 0.360 0.121 0.682 0.517
Aster 0.960 0.960 0.758 0.919 0.800 0.800 0.760 0.522 0.760 0.958 0.637 0.678 0.722 0.475 0.762 0.922
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mean attack recall of Aster is 0.72 and also is the best among the
four methods. Aster performs better than the comparisons by
14.0%, 26.0%, and 8.9% respectively concerning the recall metric.
For LR models, Aster also achieves the best attack recall compared
with the comparison methods. The mean recall of Aster is 0.76,
which is 9.9%, 35.0%, and 6.0% higher than the comparisons. When
it comes to SVM models, there is a remarkable difference in the
experiment results. The recall of ML-Leaks is the highest among all
the MIAs. Then the second highest is Shokri’s work, which is 0.77.
Our method comes to the third-highest, which is 0.72. And the last
one is the attack proposed by Nasr et al., which achieves a mean
recall of 0.42.

5.4 Performance of Aster Against Single Target Sample

In this section, we evaluate the performance of Aster when facing
only one target sample. We randomly select 1,000 samples from
the target model’s training data and testing data, respectively.
Then we perform Aster against every sample one by one. To be
specific, we duplicate every sample 49 times. Our experiments are
performed on Bank and MNIST datasets, and the results are shown
in Table 3.

From Table 3, we can see that by adding random noise to the
sample, we still get good results on these target models. For bank
dataset and MNIST dataset, the precision performance for NN, LR,
SVMmodels we get are 0.55, 0.534, 0.5 and 0.484, 0.58, 0.586 respec-
tively. The mean precision is 0.539, which is only 3.3% lower than
the mean precision of the original multiple samples scene in
Table 2. For recall performance, the mean for a single sample attack
is 0.759. Overall, by adding extra steps of duplication and perturbation
process, Aster can obtain the ability to handle inference attacks against a
single target sample.

Naturally, there is a corner case when attacking against one sin-
gle sample which is the target sample, and the perturbed samples
are all non-members. In such a case, we can find that the member
and non-member imbalance in our target dataset would greatly
affect the performance of Aster, and this still needs more explora-
tions in the future.

5.5 Impact of Number of Classes

Naturally, the number of output classes of the target model con-
tributes to how much membership information the target model
reveals. The larger number of classes, the more signals about the
internal state of the model are available to Aster. To quantify the
impact that the class number of the target models has on the perfor-
mance of Aster, we further do a set of experiments with Purchase
dataset.

Specifically, we first adopt K-Means algorithm to cluster the
samples in Purchase dataset into 2, 10, 20, 50, and 100 clusters
respectively and then assign each sample with the cluster results as
the class label. Then we train a series of NN models on Purchase
dataset with a different number of classes. After that, we execute
Aster against these models successively. The experiment results
are shown in Fig. 4.

From the results, we can see that models with fewer classes leak
less information about their training data and thus the performance
of Aster gets better as the number of classes increasing. To be spe-
cific, the attack precision increases from 0.458 to 0.571 as the num-
ber of classes increases from 2 to 100. On the other hand, the attack
recall also increases as the number of classes increases except for
the number of classes increasing to 100. One possible reason is that
models with larger class number need to remember more about
their training data, thus they are easier to get a high overfitting
level. A high overfitting level represents that the prediction of these
models will have a high tolerance of the training data’s perturba-
tion and thus the training sample has a much lower sensitivity
compared with the testing sample. In general, models with more
output classes are more vulnerable to our attack.

5.6 Norms of Jacobian Matrix for Different Classes

In this section, we also conduct a set of experiments to study the
sensitivity difference across different classes of training and testing
data on MNIST dataset. Specifically, in order to quantify the sensi-
tivity, we derive the norms of the Jacobian matrix for samples from
different classes. We train the target models on MNIST dataset,
since it has 10 classes that correspond to the handwritten digits
from 0 to 9. The experiment results are summarized in Table 4.

We derive the Jacobian matrix for each class in both training
and testing data with the numerical approximation, and then cal-
culate the mean of L-2 norm for each class. From the experiment
results, we can see that although the norm varies from one class to
another, it stays at the same magnitude. We can also see that for
most classes (except for classes 4 and 9), the norm of the training
data is lower than that of the testing data.

5.7 White-Box versus Black-Box

We also perform additional experiments to show that our inference
attack is valid under both white-box and black-box settings. To be
clear, by white-box we mean that we have the access to the inner
parameters of the targetmodels. Thatmakes it possible for us to derive
the precise formula to compute the Jacobian matrix for a certain sam-
ple. We train multiple NN models on three datasets, including iris,8

wine,9 andMNIST. The results are shown in Table 5. Iris and wine are
two commonly used toy benchmark datasets. Iris dataset consists of 50
samples from each of three species of Iris. Each samples contains four
features: the length and the width of the sepals and petals, in centi-
meters. Based on the combination of these features, the researcher
could classify the Iris into different species. The wine dataset contains
the results of a chemical analysis of wines grown in a specific area of
Italy. Three wines are represented in the 178 samples, with 13 features
of chemical analyses results.

TABLE 3
Performance for Single Sample

Target Model Metric

Dataset Model precision recall

Bank NN 0.55 0.88
Bank LR 0.534 0.92
Bank SVM 0.5 0.8
MNIST NN 0.484 0.64
MNIST LR 0.58 0.72
MNIST SVM 0.586 0.6

Fig. 4. The impacts of the number of classes (Purchase).

8. https://archive.ics.uci.edu/ml/datasets/iris
9. https://archive.ics.uci.edu/ml/datasets/wine
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From the table we can see that our black-box Jacobian matrix
approximation is very close to the precise result in three different
datasets for both the training data and testing data. That means
our approximation method performs precisely even without any
information about the target model.

6 CONCLUSION

In this article, we have explored feature space perturbation and
presented Aster, a novel MIA against ML models with only black-
box API. We observe that the sensitivity of the training data with
respect to a fully trained ML model is generally lower than that of
the non-training data. To reveal the sensitivity, we make use of the
Jacobian matrix to measure the relationship between the target
model’s prediction and the target sample’s feature value, and per-
form MIAs by comparing the sensitivity values of different data
samples. Experiments on various types of target models and data-
sets show that even without any prior knowledge about the target
model and the statistical information of its training set, Aster can
outperform other MIAs. We hope our work could illustrate the risk
of membership privacy in real-world ML models and facilitate the
emergence of effective defenses of MIAs. However, Aster would
not perform well for models that have similar sensitivity derived
from Aster to the training and testing data. We thus plan to explore
more essential relationship between an ML model and its training
data. We will also consider performing MIAs against the whole
pipeline of ML models including data pre-processing.

REFERENCES

[1] G. Apruzzese, M. Andreolini, L. Ferretti, M. Marchetti, and M. Colajanni,
“Modeling realistic adversarial attacks against network intrusion detection
systems,” ACM Digit. Threats: Res. Pract., 2021, doi: 10.1145/3469659.

[2] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intriguing
properties of adversarial ml attacks in the problem space,” in Proc. IEEE
Symp. Secur. Privacy, 2020, pp. 1332–1349.

[3] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine learning,”
in Proc. IEEE Symp. Secur. Privacy, 2018, pp. 36–52.

[4] X. Wang, R. Hou, Y. Zhu, J. Zhang, and D. Meng, “NPUFort: A secure
architecture of DNN accelerator against model inversion attack,” in Proc.
16th ACM Int. Conf. Comput. Front., 2019, pp. 190–196.

[5] L. T. Phong and T. T. Phuong, “Privacy-preserving deep learning via
weight transmission,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 11,
pp. 3003–3015, Nov. 2019.

[6] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference
attacks against machine learning models,” in Proc. IEEE Symp. Secur. Pri-
vacy, 2017, pp. 3–18.

[7] A. Sablayrolles, M. Douze, C. Schmid, Y. Ollivier, and H. Jegou, “White-box
vs black-box: Bayes optimal strategies for membership inference,” in Proc.
36th Int. Conf. Mach. Learn., 2019, pp. 5558–5567.

[8] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy analysis
of deep learning: Passive and active white-box inference attacks against
centralized and federated learning,” in Proc. IEEE Symp. Secur. Privacy,
2019, pp. 739–753.

[9] B. Wu et al., “Characterizing membership privacy in stochastic gradient
langevin dynamics,” Proc. AAAI Conf. Artif. Intell., vol. 34, no. 04, pp. 6372–
6379, 2020.

[10] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in machine
learning: Analyzing the connection to overfitting,” in Proc. IEEE 31st Com-
put. Secur. Found. Symp., 2018, pp. 268–282.

[11] G. Liu, C. Wang, K. Peng, H. Huang, Y. Li, and W. Cheng, “SocInf: Mem-
bership inference attacks on social media health data with machine
learning,” IEEE Trans. Computat. Social Syst., vol. 6, no. 5, pp. 907–921, Oct.
2019.

[12] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes, “ML-
Leaks: Model and data independent membership inference attacks and
defenses on machine learning models,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2019. [Online]. Available: https://www.ndss-symposium.org/
ndss-paper/ml-leaks-model-and-data-independent-membership-
inference-attacks-and-defenses-on-machine-learning-models/

[13] J. Li, N. Li, and B. Ribeiro, “Membership inference attacks and defenses in
supervised learning via generalization gap,” in Proc. ACM CODASPY,
2021, pp. 5–16.

[14] K. Leino and M. Fredrikson, “Stolen memories: Leveraging model memori-
zation for calibrated white-box membership inference,” in Proc. USENIX
Secur., 2020, pp. 1605–1622.

[15] B. Hui, Y. Yang, H. Yuan, P. Burlina, N. Z. Gong, and Y. Cao, “Practical
blind membership inference attack via differential comparisons,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2021, pp. 1–17.

[16] C. A. Choquette-Choo, F. Tramer, N. Carlini, and N. Papernot, “Label-only
membership inference attacks,” in Proc. 38th Int. Conf. Mach. Learn., 2021,
pp. 1964–1974.

[17] Z. Li and Y. Zhang, “Membership leakage in label-only exposures,” in Proc.
ACM CCS, 2021, pp. 880–895.

[18] J. Clements and Y. Lao, “Backdoor attacks on neural network operations,”
in Proc. IEEE Glob. Conf. Signal Inf. Process., 2018, pp. 1154–1158.

[19] D. Jakubovitz and R. Giryes, “Improving DNN robustness to adversarial
attacks using jacobian regularization,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 514–529.

[20] R. Novak, Y. Bahri, D. A. Abolafia, J. Pennington, and J. Sohl-Dickstein,
“Sensitivity and generalization in neural networks: An empirical study,”
2018, arXiv:1802.08760.

[21] D. Chen, Y. Zhang, and S. Li, “Tracking control of robot manipulators with
unknown models: A jacobian-matrix-adaption method,” IEEE Trans. Ind.
Inform., vol. 14, no. 7, pp. 3044–3053, Jul. 2018.

[22] J. G. Pope et al., “Comparing the steady state results of a range of multi-
species models between and across geographical areas by the use of th
jacobian matrix of yield on fishing mortality rate,” Fisheries Res., vol. 209,
pp. 259–270, 2019.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

TABLE 4
L-2 Norm of Jacobian Matrix for LR Models (MNIST Dataset)

Model Class 0 1 2 3 4 5 6 7 8 9

LR Training Data 71.135 87.790 81.941 130.467 125.947 144.659 88.853 110.061 124.679 148.031
LR Testing Data 79.603 94.831 108.494 134.736 121.572 151.904 102.015 115.983 132.483 146.594
SVM Training Data 12.878 9.477 17.472 24.390 31.880 41.818 17.138 22.261 27.140 39.748
SVM Testing Data 13.423 9.889 32.854 28.462 21.019 48.340 24.186 24.627 29.513 40.658

TABLE 5
White-Box versus Black-Box

Setting L-2 Norm of Jacobian Matrix

Dataset Category White-box Black-box

Iris Training Data 117.775 117.753
Iris Testing Data 146.825 146.904
Wine Training Data 43.368 43.368
Wine Testing Data 53.717 54.524
MNIST Training Data 40.914 40.930
MNIST Testing Data 48.386 48.387
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