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Abstract—Driven by the large amount of spatio-temporal data obtained from location-based social networks, the implementation of

cross-domain user linkage, also known as the User Identity Linkage (UIL), has attracted increasing research attentions. While most of

the existing UIL works discretize the spatio-temporal sparse data when identifying encountering or co-located events for UIL, user’s

distinctive behavior patterns implicit in the “check-in” spatio-temporal data with continuous nature pave the way for enhancing UIL

performance. In this paper, we propose an approach dubbed CP-Link that exploits user behavior patterns in a continuous way. In

CP-Link, the continuous space is divided into irregularly shaped stay regions, and a continuous time-based improved dynamic time

warping (IDTW) method is proposed to calculate the similarity. To bridge the gap between the ideal scenario with ample records and the

reality with sparse data, we adopt the user-associated location frequent pattern (LFP) model to compensate for the sparse deficiency.

Extensive experiments conducted on real-world datasets demonstrate the effectiveness and superiority of CP-Link, which outperforms

the state of the arts by more than 20% in terms of the AUC.

Index Terms—Continuous check-in pattern, data sparsity, LBSN, spatio-temporal data, user identity linkage
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1 INTRODUCTION

WITH the development of network technology and the
proliferation of GPS-enabled mobile devices, location-

based social network (LBSN) services such as Twitter and
Foursquare have generated a considerable amount of spatio-
temporal check-in data, which contains users’ time and geo-
location information [2], [3], [4]. The availability of such spa-
tio-temporal information provides an unprecedented oppor-
tunity to explore users’ behavior, one of which is the user
identity linkage (UIL) technique that associates different user
accounts across different LBSN applications of the same per-
son [5], [6].

UIL brings huge benefits for both service providers and
users by jointly modeling the attributes that belong to the
same user. For service providers, UIL offers a more compre-
hensive view about users by fusing data from a commercial
perspective, and thus can provide better services, e.g.,

personal cross-domain recommendations [7]. For LBSN
users, understanding the “linkability” of their accounts
helps to raise the awareness of their privacy exposure
risks [8], [9]. Hence, the implementation of an efficient UIL
has attracted increasing research attentions recently.

Existing studies explore different ways to tackle UIL
using spatio-temporal “check-in” data. Most if not all of
them link users based on encountering [10] or co-located
events [5], [11]. Early works directly compute the distance
of all spatial-temporal points in the trajectories to measure
the similarity [12], which is confronted with complexity
challenges with huge spatial-temporal records. Hence,
recent works try to lower the complexity by increasing gran-
ularity of the records, in which they divide time and space
into bins or grids based on location regions and time inter-
vals. For example, Basık et al. [13] develop an algorithm
containing two filtering steps for UIL, where the space is
partitioned into coarse-grained geographical regions in the
spatial filtering step. Chen et al. [14] propose a kernel den-
sity estimation (KDE) based method and use a grid-based
index structure to organize the location data for the sake of
high efficiency. Gong et al. [15] further propose to partition
trajectory segments into 3-dimensional space–time cells.
Similar partitioning methods are also utilized in terms of
preventing UIL attacks for privacy-preserving LBSNs [16].

Dividing space into bins/grids to satisfy the encounter-
ing conditions, however, leads to spatio-temporal discretiza-
tion, which is more likely to result in the boundary effect,
i.e., misclassification of locations close-by the division
boundaries. As shown in the illustrative example in Fig. 1a,
the boundary points “C,” “D,”“E,” and “F” that are grouped
to theMall grid are actually closer to the Apartment or School
setting. Such mismatch in grid-based UIL techniques would
potentially degrade the linkage success rate, as validated in
our experimental results in Section 5.
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Motivated by the continuous nature of the space, in this
paper, we propose CP-Link that exploits continuous spa-
tio-temporal check-in patterns for UIL. We develop a spa-
tial clustering method based on density-peaks (DP), by
which the space is partitioned in a continuous manner,
and stay regions of arbitrary shapes can be extracted (cf.
Fig. 1b). To preliminarily differentiate the merit of our
clustering-based method, we measure the clustering
quality via a widely-used metric Davies–Bouldin index
(DBI) [17], which is the ratio of the sum of within-cluster
scatter to between-cluster separation (cf. Fig. 1c). Our
superior clustering performance benefits from the consid-
eration of both in-cluster and between-cluster distances,
thus avoiding the possible misclassification of locations
close-by the division boundary.

Though the basic idea is simple, the design and imple-
mentation of CP-Link have two major challenges. The first
one is how to deal with the data sparsity. On one hand, it is
indicated that the majority of the users have very sparse
location records in LBSN datasets, say less than 5 records
per user on average [20]. On the other hand, for different
platforms, existing UIL methods are limited to use the
check-in data in a common fixed time interval. According to
our observation in the real world datasets, users prefer to
share on different platforms in different periods. Therefore,
the available records in a common period are rare [21], [22],
which is not sufficient for time aligning and identity link-
age. To tackle this issue, we adopt the user-associated loca-
tion frequent pattern (LFP) model to explore the spatial and
temporal characteristics hidden in the records, which are
supposed to be the same across different services and can
be used to predict the associated common locations behind
the published records.

The second challenge is how to compute the similarity
between users with the extracted stay regions. A straightfor-
ward method is to measure the distance of stay regions with
irregular shapes, which requires normalization as the prem-
ise and has difficulty in dealing with various shapes.
Besides, the time information within each stay region
should also be taken into account. Therefore, we propose an
improved dynamic time warping (IDTW)-based similarity
algorithm to transform arbitrarily shaped regions into time
series and further calculate the similarity of each stay region
in a continuous way. Our proposed algorithm does not

require the location records to fall into the same time bin
and thus avoids time discretization.

We summarize our major contributions as follows:

� We present CP-Link, the first work that considers
check-in records within DP-based stay regions as
time series for UIL in LBSNs, and aims to tackle the
spatio-temporal discretization problem which has
been largely neglected by existing studies.

� CP-Link calculates similarity using IDTW, extracting
users’ spatio-temporal periodic behavior in particular
geographic areas. Based on the extracted features, CP-
Link develops a novel similarity measure to match
cross-domain users.

� Wepropose the user-associated LFPmodel to address
the check-in data sparsity issue and predict associated
locations for better UIL.

� We conduct extensive experiments using real-world
datasets, and the results demonstrate that CP-Link is
effective for UIL and outperforms state-of-the-art
approaches.

Note that this work is based on and includes solid exten-
sions from our previous work [1]. As for technique contri-
butions, we extend the CP-Link to CP-Link+ to reach a
higher precision at the cost of computing complexity; we
further analyze the actual application scenarios in view of
the speed-accuracy tradeoff. We also conduct extensive
experiments from several aspects. First, to enhance the
motivation in continuous spatial-based clustering, we test
clustering solutions on ground-truth and compare with the
traditional grid-based methods. The results verify the out-
performance and robustness of our continuous design
methodology. Second, we emulate attacks on the user-asso-
ciation location mining parts, where the overall perfor-
mance is slightly affected with different levels of noises.
Besides, the privacy protection effect against the linkage
attack is analyzed and evaluated, revealing the risk of pri-
vacy leakage.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews some related works. Section 3 describes how to
infer the hidden locations. Section 4 discusses the detailed
design of CP-Link, and Section 5 presents the performance
evaluation of the proposed methods. Finally Section 6 con-
cludes this paper.

Fig. 1. Illustration and comparison of grid-based and spatial clustering-based stay region construction. (a) For grid-based method, the boundary
points “C”, “D”,“E”, and “F” that are grouped to the Mall grid are actually closer to the Apartment or School setting. (b) Our spatial clustering-based
method avoids the mismatch by partitioning the space into arbitrary shapes in a continuous manner. (c) Davies–Bouldin index (DBI) of grid-based vs.
spatial clustering-based solution, where a smaller and more stable DBI represents a more compact and effective cluster solution.
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2 RELATED WORK

Based on the types of data used for UIL, existing algorithms
can be largely classified into three categories: content-based
(user check-in information such as timestamps, location,
and posts), user profile-based (users’ attributes such as user-
name, address, and age), and network structure-based (e.g.,
interaction and relationship between users). Spatial-tempo-
ral UIL in our scenario mainly utilizes LBSN check-in data
and thus falls into the first category.

2.1 Spatial-Temporal UIL

Focusing on the user content, a number of UIL algorithms
with different manners to represent the spatial-temporal
interactions of users have been proposed [5], [10], [11], [13],
[14], [18], [19], [23], [24], [25], [26], [27], [28], which largely fol-
low three lines: co-location, co-clustering, and co-occurrence.

Co-location signifies that users’ IDs repeatedly appear at
the same location (actually the coarse-grained grid). The
pioneering work by Rossi et al. [18] characterize users by
using the frequency of visits to specific locations without
using the time information. Wang et al. [5] link user IDs
across multiple services using a contact graph model to cap-
ture the co-location of all users’ IDs across multiple services.
Chen et al. [14] propose a grid-based KDE to organize loca-
tions where locations within a common grid are treated as
co-location and the similarity is calculated by means of the
distance between grids. Unlike previous efforts to link user
accounts directly, Wang et al. [11] propose a co-location
social network “CLSN” which characterizes online interac-
tions between virtual IDs and offline social network encoun-
ters, owing to which they achieve an accurate mapping of
online accounts. Considering the heterogeneity of mobility
data, Feng et al. [19] conduct a pre-training strategy to deal
with the highly heterogeneous nature and propose an end-
to-end deep learning-based framework to extract spatial-
temporal locality feature for user linkage. Isaj et al. [27]
organize the spatial entities into blocks based on spatial
proximity and match users with the same attributes of the
spatial entities.

Instead of dividing the space equally, some works tend to
distinguish the trajectories by clustering locations and consid-
ering overlaps of clusters to represent the co-clustering rela-
tionship. To adequately utilize user-generated geo-location
data, a co-clustering-based framework is proposed [24], in
which the clustering in temporal and spatial dimensions is
carried out synchronously. Similarly, Qi et al. [25] advocate an
identification resolution method to find top-N regions whose

trajectory points are most frequently distributed and match
users between clustering regions.

Some other works are more inclined to regard users as
co-occurrence when they encounter in the same time inter-
val. Riederer et al. [10] divide space and time into bins,
based on which they measure users’ similarity by a new
type of maximum weight matching combining positive and
negative signals from co-occurrence events. With the view
of averting negative matches in UIL, Basık et al. [13]
develop k-l diversity-based ST-Link algorithm and carry
out the spatial and temporal filtering steps independently
by first distributing entities over coarse-grained geographi-
cal regions and building a sliding window-based scan to
select candidate co-occurrence entity pairs. They further
develop an efficient matching process with a locality-sensi-
tive hashing-based approach that significantly reduces can-
didate pairs [26], where a tree is established to keep the co-
occurrence counts of the dominating grid cell IDs in the
time window. To reveal privacy vulnerabilities of spatial
cloaking, Li et al. [23] capture uncovered actual locations
that are periodically visited by the target user, they express
spatial and temporal correlations by the proximity of conse-
cutive actual locations in cloaked regions.

We classify the representative algorithms based on their
design principles and compare them with CP-Link in
Table 1. We can see that the existing algorithms have yet to
consider both data sparsity, location relevance and spatio-
temporal discretization simultaneously, which motivates
the design of CP-Link to achieve better performance.
Besides, we list the best precision performance of each algo-
rithm, reported in the original works. From the results we
can see that considering the data sparsity is a crucial factor
for better linkage in POIS [10], while flexible time period
may have less importance. Moreover, compared to other
methods, CP-Link shows remarkable precision due to the
continuous spatio-temporal design instead of the discretiza-
tion as well as the location relevance.

2.2 UIL of Profile and Network Data

Since we focus on the identity linkage based on content
datasets (spatial-temporal check-ins), we briefly introduce
the related study designed for network datasets and profile
datasets. Goga et al. [29] utilize users’ writing styles as cap-
tured by language models along with geo-locations and
timestamps attached to users’ posts, so as to identify
accounts on different social network sites. To address the
issue that there is no guarantee of stability for pair-wise
user linkage, Mu et al. [30] propose the “Latent User Space”
concept to model the relationship between the underlying

TABLE 1
Comparisons of Different UIL Algorithms

Design Principles POIS [10] WYCI [18] SIMP [5] GKR-KDE [14] DP-Link [19] CP-Link

Information used Content Content Content Content Content Content
Flexible time period ✗ ✓ ✗ ✓ ✓ ✓
Considering data sparsity ✓ ✗ ✗ ✓ ✓ ✓
Considering spatio-temporal discretization ✗ ✓ ✗ ✗ ✗ ✓
Considering location relevance ✗ ✗ ✓ ✗ ✓ ✓
Precision performance 0.68 N/A 0.55 0.5 N/A 0.75
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real users and their observed projections onto the varied
social platforms. Nie et al. [31] discover users’ core interests
by jointly using user network datasets and interest-based
contents datasets (posts content). To overcome the limitation
of hand-crafted features, automatic feature learning has been
proposed by Yang et al. [32]. A hypergraph including user-
user friendship and user-time-POI-semantic (check-ins) is
formed to predict users’ locations and infer users’ connec-
tions by using the connections between certain users as back-
ground information to make their predictions. Li et al. [33]
focus on the problem of matching user accounts across social
networks solely by characterizing information redundancies
contained in username and display name and employ the
Gale-Shapley algorithm to eliminate the one-to-many or
many-to-many relationships in the identification results.
These methods cannot be directly applied to our scenario
with only time and location information available.

3 INFERRING ASSOCIATED LOCATIONS

We formalize our problem as follows: for two different
LBSNs, there are two sets of user accounts U ¼ fu1; u2; . . .;
umg and V ¼ fv1; v2; . . .; vng, where each user u 2 U (resp.
v 2 V) has a set of check-in records Ru ¼ fr1u; r2u; . . .; rmu g
(resp. Rv ¼ fr1v; r2v; . . .; rnvg). Here, a check-in record ru is in
the form of ðu;u ; tuÞ, where lu and tu are the location and time

when the check-in takes place. The aim of CP-Link is to find
all account pairs ðui; vjÞ of the same user between accounts of
U and V. For ease of exposition, we summarize the notations
used throughout the paper in Table 2.

Before digging into the CP-Link design, in this section,
we first tackle the location sparsity issue. The pipeline of
our algorithm is illustrated in Fig. 2. Our idea is simple:
since some users have only a few check-in records which is
insufficient for mining users’ regularity, we have to make
up the check-in records for them. Our solution is based on
the observation that users with a similar mobility pattern
often check in at some common locations [34], [35]. Thus
assuming the check-in locations of user u are sparse, we first
identify the associated users who have significant overlap of
u’s locations and further select the highly associated loca-
tions from the locations of u’s associated users. As such, we
can regard these highly associated locations as the supple-
ments of u’s locations.

3.1 Identifying Associated Users

We refer to the associated users of user u as those whose
check-in locations are of high overlap with u’s locations. It
is noticed that in practice one’s location can rarely cover
another’s due to its “point” nature. Therefore when we refer
to the overlap of two locations, we actually enlarge the loca-
tion to a disk. Specifically, for u’s location lu, we define its
corresponding disk Dlu ¼ flx : jlx � luj � dgg, where dg is
the radius of the disk and can be set upon required granu-
larity. We further define the hit-function to indicate whether
two locations lu and lu0 overlap as follows

Hitðlu; lu0 Þ ¼
1; if Dlu \ Dl0u 6¼ oslash;
0; if Dlu \ Dl0u ¼ oslash;:

�
(1)

The hit-function here is simplified as a binary value. Actu-
ally, there is a second option for the hit-function, represent-
ing the actual overlapping proportion of access locations:

Hitðlu; lu0 Þ ¼
SðDlu \ Dl0uÞ

SðDluÞ
(2)

where Dlu is the corresponding disk of location lu and
SðDluÞ is the area of the disk. The numerator measures the

Fig. 2. Workflow of our algorithm, which contains two main parts: (a) Inferring associated locations to tackle the location sparsity issue; and (b) user
identity linkage with CP-Link.

TABLE 2
summary of Notations

Notation Description

u A user account
liu A location of user u
rliu Relative density of liu
dliu Minimum density ascent distance of liuLu Location set extracted from u’s check-ins
Au Associated user set of u
LAu Location set extracted from Au

FLAu
Location frequent itemsets of LAuDlu Enlarged disk with alterable radius for lu

Su All stay regions of user u
DðSu;SvÞ Distance between Su and Sv

Simðu; vÞ Similarity between u and v
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area of the location overlap. In this way, the calculation can
capture the overlap more accurately; yet requiring more
computing cost. This design is integrated into an efficacy
improved CP-Link+ described in Section 4.3.

To identify u’s associated users, we use the Jaccard coeffi-
cient as the measurement, which takes both the common-
ality and the difference of the visited locations into
account [36] and also enables us to measure the proportion
of common locations accessed by different users. The Jaccard
coefficient between users u and u0 can be computed as
follows

Jacðu; u0Þ ¼
PjLuj

i¼1

PjLu0 j
j¼1 Hitðliu; lju0 Þ

jLu [ Lu0 j �
PjLuj

i¼1

PjLu0 j
j¼1 Hitðliu; lju0 Þ

; (3)

where Lu (resp. Lu0 ) is the location set extracted from their
check-in record set Ru (resp. Ru0 );

PjLuj
i¼1

PjLu0 j
j¼1 Hitðliu; lju0 Þ

evaluates the number of common locations accessed by the
two users, while jLu [ Lu0 j denotes the number of all loca-
tions visited by the two users.

After obtaining all the Jaccard coefficients between u and
each of the other users in U, we set a threshold Jacthr to
determine the number of associated users for each individ-
ual by means of filtering out users with lower association,
i.e., users whose Jaccard coefficient values are above Jacthr
are chosen as u’s associated users. Through experiments,
we find that a too high or too low threshold Jacthr will affect
the performance of the algorithm, and the coincidence
degree between user access locations can achieve an ideal
effect at around 10%. In addition, considering that some
LBSN platforms contain vast amounts of check-in records,
and the number of one’s associated users may be redun-
dant, yielding unnecessary computing costs. Therefore, we
also adopt a simple top-k selection method which chooses
users with the top-k Jaccard coefficient values from the
ranked list as u’s associated users (k ¼ 10 in our experi-
ments). The final selected associated users of u are denoted
by Au.

3.2 Mining Location Association With LFP-Tree

After obtaining Au, we next seek for highly associated
locations as the hidden locations of u (denoted by Lhdn

u ),
which are picked out from the locations of Au (denoted
by LAu ) by adapting the frequent pattern (FP) growth
technique [37], [38] (c.f. Fig. 2). We are inspired to settle
location items LAu in virtue of the FP-tree structure,
which we refer to as LFP-tree. In particular, we first trans-
form LAu into an LFP-tree, which is a compact data struc-
ture to compress and store the location frequent items of
LAu . Then we develop a pattern-fragment growth mining
method based on FP-tree to mine location frequent
patterns.

Definition 1 (FP-Tree [37], [38]). The FP-tree is an extended
prefix-tree structure, which mines the access frequency of each
item (i.e., location in our setting). The root of an FP-tree is
labeled as “null” with a set of item-prefix sub-trees as children.
Each node in the item-prefix sub-tree stores three elements:
item-name, occurrences on the path, and node-link where nodes
with the same item-names are linked in support-descending
order via such node-links.

To construct the LFP-tree, we first gather the location data-
sets of the user and its corresponding associated users, which
will be scanned to filter and sort location items according to
the support (i.e., the frequency of occurrence in LAu ). An
LFP-tree is then constructed by inserting locations into the
tree nodes. We demonstrate this via an example of an arbi-
trary user u, whose associated users Au have been extracted.
We display part of the filtered trajectories and process of
associated location inference in Fig. 2. In the first scan, we
conduct trajectories of users Au by traversing their location
datasets LAu . To filter out the most representative points of
interest and reduce the number of the candidates, locations
with less than 2 supports are omitted in the trajectories.
Meanwhile, we collect the sets of location frequent items
FLAu

and sort the items according to their corresponding sup-
ports, e.g. the most visited location z is arranged at the top.
Then for the second scan, with the sorted trajectories, we cre-
ate an LFP-tree with a root labeled with “null” and put the
locations into the tree nodes according to the order of FLAu

,
where each node stores a location and its number of occur-
rences on the path. In this way, an LFP-tree is generated
recursively after completing the two scans. Therefore, for
user u, the size of its LFP-tree is bounded by

P
Li
Au

2LAu
jFLi

Au

j,
and the height is bounded bymaxLi

Au
2LAu

jFLi
Au

jwithout con-
sidering the root.

Some important properties and theorems from [38] are
presented in the following, which will be used to validate
the rationality and compactness of the tree structure when
applying frequent mining.

Property 1 (Location-link Property). For any location fre-
quent item liAu

2 LAu , all the possible patterns containing only
frequent items and liAu

can be obtained by following location-
links of liAu

, starting from lAi
u

0s head in the LFP-tree header.

Property 1 ensures that after the LFP-tree construction,
we can access all the related frequent-pattern information of
liAu

including locations and occurrences in the path by tra-
versing the LFP-tree once following its location-links.

Property 2 (Prefix Path Property). When calculating fre-
quent patterns for location item liAu

in a path P of the tree, we
only need to get the nodes in the prefix path of liAu

and adjust
the number of accesses of these nodes to be the same as liAu

.
Such information is then transformed into a count-adjusted
prefix path of liAu

for path P , which is a database of patterns
occurring with liAu

and is referred to as the conditional pattern-
base (CPB) of liAu

.

Property 2 indicates that after creating the LFP-tree, we
can construct a small-scale CPB for any location item.

Theorem 1 (Pattern Growth [38]). Let a be a frequent itemset
in LAu , BðaÞ be CPB of a, and b be an itemset in BðaÞ. Then
a [ b is frequent in LAu if and only if b is frequent in LAu .

Based on Theorem 1, we can first mine the frequent 1-
location-itemsets a in LAu and identify the location frequent
itemsets in the CPB we build for a. In this way, we can sim-
plify the process to a k frequent 1-location-itemset mining
problems, and the location frequent items we extract from
the CPB on the LFP-tree is exactly what we need for the tar-
get location set LAu of user u.
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Now we apply pattern-fragment growth to conduct the
mining on the corresponding path of the LFP-tree, which
takes full advantage of the CPB. We extract CPB by looking
for all prefix paths for each frequent 1-location-itemsets a in
LAu , starting with the header. Next, a conditional LFP-tree
is thus formed using each prefix path as a sample, which is
then mined recursively. Eventually, we get all the location
frequent patterns that meet the minimum support, from
which we can obtain the associated locations. For instance,
in Fig. 2, the associated locations for y are fx; zg. Similarly,
we can get all the associated locations for other location
items. Algorithm 1 illustrates the process of finding the
associated user of user u and extrapolating hidden locations
using LFP growth.

Algorithm 1. Inferring Associated Locations

for each u 2 U do
Compute the Jaccard coefficient of u and all other users in U
and find the top-k associated users Au ¼ fu1; u2; . . . ; ukg with
Jaci > Jacthr;
Scan LAu , the location set of Au, twice to collect the support of
each location frequent items and construct LFP-tree in the
support-descending order, which stores all location frequent
itemsets FLAu

;
for Each frequent 1-location-itemset Fi

1 in FLAu
do

Generate pattern Fi
1 with support, and let freqðP ðFi

1Þ be the
set of patterns;
Construct CPB and the corresponding conditional LFP-tree
for Fi

1;
Mine LFP in the conditional LFP-tree freqðQðFi

1ÞÞ;
end for
Return the LFP set for LAu : freqðLAuÞ ¼
freqðP ðT ÞÞ [ freqðQðT ÞÞ [ ðfreqðP ðT ÞÞ � freqðQðT ÞÞÞ;
Let AL be the relevant locations of user u inferred from
freqðLAuÞ and obtain the associated locations in AL;
Append these associated location records to the check-in
records of user u.

end for

Given the corresponding highly associated locations Lhdn
u

containing locations which are most likely visited by u can
be found, they are further appended to Lu to make up for
u’s sparse location data. In this way, most users’ check-in
locations can be significantly supplemented, which are fur-
ther utilized for UIL in CP-Link.

4 CP-LINK DESIGN

After replenishing the sparse data by supplementing the
inferred hidden locations, we can next focus on UIL in
LBSNs. In reality, different from other sequential data, tra-
jectory with spatial-temporal properties involves distinct
user mobility patterns, e.g., the frequency of location check-
ins follow a power-law distribution [39]. Besides, records of
a common user or even different users are not independent.
In our algorithm, we extract users’ spatial and temporal pat-
terns adequately. In general, CP-Link involves two steps (c.
f. the right part of Fig. 2):

(1) Stay Region Construction. Users’ stay localities distrib-
utes at significant clusters according to the characteristics of
social activities. In order to mine the representative clusters

as well as to extract users’ mobility patterns, we first con-
struct individual stay regions for each user with a DP-based
clustering method.

(2) IDWT based UIL. We use a time series similarity
matching model IDTW to calculate the similarity between
cross-domain users’ stay regions, followed by completing
UIL where the user pair with the highest similarity is
selected as the output linked pair.

4.1 Stay Region Construction

A common practice of UIL adopts a set of stay regions to
mine users’ spatio-temporal behaviors, where a stay region
stands for a geographical area contains a set of users’ check-
in records. A stay region can be of various shapes — rectan-
gle, circular, or irregular, depending on the construction
method. One typical strategy to construct stay regions is to
divide the space of check-in records into grids with different
scales, which may suffer from spatial discretization.

In CP-Link, we use a DP clustering-based stay region
construction method to avoid spatial discritization and con-
sider the following two crucial factors.

Definition 2 (Relative Density). The relative density of a
location liu 2 Lu is defined as its Radial Basis Function approxi-
mation to all other locations in Lu:

rliu
¼

X
l
j
u2Lunfliug

expð�jliu � ljuj2Þ: (4)

From the definition we can see that rliu reflects liu’s local
density among all locations in Lu. It is obvious that the more
number of locations in Lu that are closer to liu, the higher
value rliu is.

Definition 3 (Minimum Density-Ascent Distance).
Assume rliu 6¼ maxLu rlju

and denote the density-ascent set of liu
as Ldajliu ¼ flju : r

l
j
u
> rliug. The minimum density-ascent

distance dliu is then defined as:

dliu
¼ min

l
j
u2Ldajliu

jliu � ljuj: (5)

It can be observed that Ldajliu contains all locations of liu
whose relative density is higher than rliu

, and dliu
measures

the minimum distance from liu to locations in Ldajliu .
When constructing stay regions, we first determine the

clustering center of each region and then assign the rest loca-
tions to the nearest stay region.Notice that the larger the value
of rliudliu product is, the more likely the location liu being the
cluster center. Therefore, we have the following definition.

Definition 4 (Location DP). The location density of liu
is defined as g liu

¼ rliu
dliu

, and the location DP are locations

of u with the top-K largest location density, denoted as
Luc ¼ fl1uc; l2uc; . . . ; lKucg.
The above definitions actually provide the approach to

obtain Luc of a specific user u, and locations in Luc are then
treated as the candidate cluster centers of u. The final cluster
centers of u can be then determined iteratively from i ¼ 1 to
i ¼ K � 1 calculating the following distances in Luc:
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ljuc 2 Cu; jliuc � ljucj � dc
Lu n Cu; jliuc � ljucj < dc

�
j ¼ iþ 1; . . . ;K; (6)

where Cu is the cluster center set of u, and dc is the cut-off
distance that ascertains the minimum distance between two
cluster centers. In this way, we can obtain Cu by filtering
out the candidate centers in Luc with a shorter distance (i.e.,
less than dc) which may belong to the same geographic area.

Given Cu, we further assign each of the remaining loca-
tions of u (i.e., Lu n Cu) to its nearest cluster center. In this
way, we can finally obtain the spatial clusters considered as
stay regions for each user. The locations within each stay
region are arranged according to the generating order of the
check-ins. For user u, Su ¼ fs1u; s2u; . . . ; spug, for stay region spu,
which consists of location records of length x, fl1u; l2u; . . . ; lxug
sorted by generation time, it is considered as a time series.

4.2 IDTW Based UIL

After obtaining the stay regions for users in U ¼ fu1; u2;
. . . ; umg and V ¼ fv1; v2; . . . ; vng, we accomplish the UIL
work in three steps. First, an improved DTW estimation-
based solution is proposed, which uses the distance of
cross-domain users’ stay regions and well reflects the user
activity characteristics in each area. The distance of stay
regions is then converted into similarities between users.
Finally, the cross-domain users with the highest similarity
will be returned as the same users.

One of the key steps is to calculate the distance between
the corresponding cross-domain users’ stay regions on the
basis of DTW, and we consider the location records within
each stay region as a time series. DTW [40] can measure the
similarity or distance between two discrete time series and
extend or compress two sequences with certain adaptability
at the same time [41]. Compared with Euclidean distance
which is very sensitive to even small mismatches and
requires the two time series to be of equal lengths, DTW is
more suitable for our scenario and elegantly overcomes the
above concerns.

Definition 5 (DTW). Given u 2 U and v 2 V, along with their
corresponding stay region sets Su and Sv, DTW aims to calcu-
late the minimum distance between each stay region su 2 Su :
fl1u; l2u; . . . ; lxug and sv 2 Sv : fl1v; l2v; . . . ; lyvg, which requires
constructing the Distance Matrix and finding a path from the
upper left corner to the lower right corner such that the path
through the elements minimizes the distance of su and sv.

For time series su : fl1u; l2u; . . . ; lxug, sv : fl1v; l2v; . . . ; lyvg, an
y-by-x distance matrix is constructed and the path F ¼
ffð1Þ;fð2Þ; . . . ;fðT Þg is found to map or align su and sv. We
represent each element fðkÞ 2 F as:

fðkÞ ¼ ðfsuðkÞ;fsvðkÞÞ k ¼ 1; 2; . . . ; T; (7)

which indicates T correspondences from the locations of su
to the locations of sv, with the possible value of fsuðkÞ and
fsvðkÞ as 1; 2; . . . ; x and 1; 2; . . . ; y, respectively.

Obtaining the optimal warping curve F, the distance
between su and sv is minimized by:

DTWðsu; svÞ ¼ min
F

dFðsu; svÞ; (8)

where dFðsu; svÞ ¼
PT

k¼1 dðfsuðkÞ;fsvðkÞÞ denotes the accu-
mulated distortion of corresponding value in the distance
matrix on the path elements fsuðkÞ and fsvðkÞ.

Since DTW has an OðN2Þ time and space complexity,
which limits the efficiency of performing similarity calcula-
tions on large data, we use FastDTW [42], an approximation
of DTW which combines constraint and data abstraction on
the basis of DTW and is able to find an accurate warped
path with a linear time and space complexity.

FastDTW involves three steps. First, the original time
series is abstracted into a smaller time series that represents
the same curve as accurately as possible. Then the DTW
algorithm is applied to time series at a coarse-grained level.
The path obtained at a coarser granularity is finally fine-
grained through local adjustments of the warped path.

As mentioned above, a user’s activities in a stay region
may follow a periodic pattern and we improve the conven-
tional FastDTW based on this. In the process of finding the
optimal path, in order to better match the periodic time
series, we introduce the longest common subsequence fac-
tor on the basis of the FastDTW. Specifically, for stay
regions su : fl1u; l2u; . . . ; lxug and sv : fl1v; l2v; . . . ; lyvg, the attenua-
tion coefficient of the longest common subsequence can be
defined as:

a ¼ 1� ax;y
2

x � y ; (9)

where x and y are the number of elements in su and sv,
respectively, and ax;y is the length of the longest common
subsequence, which calculated according to the dynamic
programming method as:

ai;j¼
0; i=0 or j=0
ai�1;j�1 þ 1; Hit(lui-luj)=1
maxðai�1;j; ai;j�1Þ; Hit(lui-luj)=0

8<
: ; (10)

where i 2 ð0; 1; . . . ; xÞ; j 2 ð0; 1; . . . ; yÞ, and ai;j represents
the length of the common subsequence of fl1u; l2u; . . . ; liug and
fl1v; l2v; . . . ; ljvg. We consider two locations as overlapped
common location as long asHitðliu � ljuÞ ¼ 1 (c.f. Eq. (1)).

Since stay regions can largely reflect users’ activity and
behavior characteristics, we assign each stay regionwith spe-
cific weight determined by the number of locations within
the region to highlight individual frequently visited spots.
For user uwith locations Lu ¼ fl1u; l2u; . . . ; lnug partitioned into
stay region set Su ¼ fs1u; s2u; . . . ; spug, we define the weight of
the stay region su : fl1u; l2u; . . . ; lxug as:

vðsuÞ ¼ x

n
; (11)

where x is the number of locations within the current stay
region su, and n is the total location records generated by
user u. Each user’s weight allocation method of stay regions
is unique compared to that of grid-based method, which
leverages the uniqueness of individual users and improves
the performance of differentiating users.

For stay region su and sv, we modify the IDTW by:

dðsu; svÞ ¼ min
f

XT
k¼1

avðsuÞdðfsuðkÞ;fsvðkÞÞ: (12)

4600 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 8, AUGUST 2023

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on July 08,2023 at 04:19:11 UTC from IEEE Xplore.  Restrictions apply. 



In other words, the distance between su and sv largely
depends on the length of longest common subsequence of
the two sequences. The larger overlap of the stay regions
between two users, the higher possibility that the two
accounts belong to the same user. Having processed the clus-
tering and calculating distance for all users’ stay regions, for
user u and v from social network platform U and V with cor-
responding Su ¼ fs1u; s2u; . . . ; spug and Sv ¼ fs1v; s2v; . . . ; sqvg, the
distances between Su and Sv are obtained, respectively:

DðSu;SvÞ ¼fmindðs1u; sjvÞ;� � �;mindðspu; sjvÞg; j ¼ 1; . . . ; q;

DðSv;SuÞ ¼fmindðs1v; s1uÞ;� � �;mindðsqv; siuÞg; i ¼ 1; . . . ; p: (13)

We calculate the similarity between u and v as follows:

Simðu; vÞ ¼
P

di2DðSu;SvÞ e
�di

p
þ
P

dj2DðSv;SuÞ e
�dj

q
; (14)

where p and q represent the number of stay regions of user u
and v, respectively.

For each user u from U, we calculate the similarity
between u and all the users from V and return the linked
pair with the highest similarity maxv2VSimðu; vÞ on the con-
dition that maxv2VSimðu; vÞ > SD. We summarize CP-Link
in Algorithm 2, which consists of the processes of stay
regions construction, similarity measure, and user linkage.

4.3 efficacy Improved CP-Link+ Design

CP-Link adopts relatively coarse-grained designs to achieve
efficient UIL. To improve the efficacy, we propose CP-Link
+ by modifying CP-Link from two aspects.

First, recall that in Section 3.2, we define the hit-function
in CP-Link to decide whether two locations overlap using a
binary value function. In CP-Link+, we replace the binary
value function to real-valued function, i.e. to compute the
area of the overlap relation. The calculation of hit-function
is upgraded to Eq. (2), and the corresponding time complex-
ity increases from OðnÞ to Oðn2Þ.

Second, in Section 4.2, we employ FastDTW to accelerate
the computing speed. This method achieves linear time and
space complexity with coarsening, projection and refine-
ment operations on the basis of DTW, thus only outputting
an approximation of the optimal warp path between two
stay region sets. In CP-Link+, we simply adopt the original
DTW instead of FastDTW to reach the optimal distance,
though the original DTW takes longer computing time.

5 PERFORMANCE EVALUATION

5.1 Experiment Setup

5.1.1 Datasets

We use the real-world check-in datasets from Foursquare and
Twitter in our experiment, which are originally used in [43],
and were crawled with a shell script from websites https://
foursquare.com/ and https://twitter.com/ in November,
2012. The datasets are commonly adopted by recent works [5],
[10], [14], [30], [44], [45]. To evaluate the performance of CP-
Link, we only use the location information and timestamps in
the check-in recordswhile removing other information such as

post contents. The detail of the datasets is presented in Table 3,
with 1644 linked user pairs as the ground truth.

Algorithm 2. CP-Link

Input: User account sets U and V
Output: Linked user pairs LP .
for ui in U and vj in V do
Extract stay regions of ui and vj with DP clustering method as
Sui ¼ fs1ui ; s2ui ;� � �; spuig and Svj ¼ fs1vj ; s2vj ;� � �; squjg, respectively;

end for
for ui in U do
for vj in V do
CalculateDðSui ;SvjÞ based on Eq. (13);
Calculate Simðui; vjÞ based on Eq. (14);

end for
ifmaxv2VSimðui; vÞÞ > SD then
Add user pair ðui; vÞ into LP ;

end if
end for

5.1.2 Compared Algorithms

We compare CP-Link with the following three state-of-the-
art algorithms.

POIS [10] uses “encountering” events to match users.
The number of visits of each user to a location during a time
period is assumed to follow the Poisson distribution, and an
action on each service is assumed to occur independently
with the Bernoulli distribution. Based on this mobility
model, the similarity is calculated as:

Simu;v ¼
X
t2T

X
l2L

fl;tðUðtÞVðtÞÞ;

where fl;t measures the probability of an “encountering”
event in location l at time slot t.

SIMP [5] uses a contact model to map all IDs into a big
graph where an edge represents the same location and the
weight depends on the time information. It calculates users’
similarity by weighting users’ “co-locations,” and the simi-
larity function is defined as:

Simu;v¼P ðXðu; vÞ¼1jrðVÞÞ¼ Qðu; vÞP
u2Ns1 ðvÞ Qðu; vÞþbðvÞrðVÞ ;

where Ns1ðvÞ represents a collection of ID accounts in V,
Qðu; vÞ is defined as the joint probability of the observation
rðVÞ and Xðu; vÞ ¼ 1, and bðvÞ is the probability that v is not
inNs1ðvÞ.

GKR-KDE [14] designs a grid-based kernel density estima-
tion (KDE) method. Each user is represented by a sequence of
k� k grid cells with corresponding confidences, using the
Renyi entropy to calculate the weight. The similarity function
is as follows:

TABLE 3
Description of Our Datasets

Domain Users Check-ins Date Range

Foursquare 2970 44915 2008.10-2012.11
Twitter 3518 516787 2010.01-2012.11
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Simu;v ¼
Xk
i¼1

fðgui jGðvÞ; hÞ;

whereGðvÞ is the grid representation of user v; gui is the grid
cell ID of user u; fðgui jGðvÞ; hÞ is the probability density
function, which measures the distance between gui and
GðvÞ, and its radial range is controlled by a bandwidth
parameter h.

Simplified CP-Link. For baseline comparison, we also pro-
pose a simplified version of CP-Link which uses the sparse
location data without inferring the associated locations with
LFP growth method. The similarity function is the same as
in Eq. (14).

CP-Link+. We implement the same experiment by CP-
Link+ with advanced hit-function, the similarity function is
the same as in Eq. (14).

5.1.3 Metrics

We evaluate the performance using the following metrics.
Precision: the ratio of correctly linked user pairs over all

the returned user pairs.
Recall: the ratio of correctly linked user pairs over actu-

ally linked user pairs in the ground truth.
F1 Score : the harmonic mean of Recall and Precision:

F1 ¼ 2�Recall� Precision

Recallþ Precision

AUC: the area under the ROC curve, where the ROC
curve plots the true positive rate (TPR) against the false pos-
itive rate (FPR). We use AUC to evaluate the quality of simi-
larity rankings, which is calculated as the probability that
the randomly selected positive cases rank higher than the
negative. Here, “positive” means the returned user account
pairs belong to the same user [5].

Hitting Ratio: the ratio of the number of u’s highly associ-
ated locations Lhdn

u over Lhdn
u :

HRðuÞ ¼
PjLuj

i¼1

PjLhdn
u j

j¼1 Hitðliu; lju0 Þ
jLhdn

u j ; u0 2 Lhdn
u :

5.2 Performance of Associated Location Inference

As mentioned that the individual records are sparse, we
tackle this issue by the associated location inference where
location frequent itemsets are explored utilizing LAu instead
of Lu. To examine the quality of the inference, we plot the
comparison of the amount of Lu and LAu in Figs. 3a and 3b.
We can see that in Foursquare, users with more than 5
records account for 60%, while the proportion is about 80%
for LAu ; similar results can be observed in Twitter, indicat-
ing that the amount of records in LAu is relatively more suf-
ficient. Further, after the LFP-tree construction, we acquire
the LFP-tree with the maximum height of FLAu

, based on
which we mine and obtain the associated locations. In
Figs. 3c and 3d, we plot CCDF of the tree height per user.
We can find that in Foursquare, users with more than 5 loca-
tion frequent itemsets account for 60% and the amount is
approximate in Twitter, which is enough to guarantee the
associated location mining.

Next, to investigate the effect of our proposed associated
location inference method, we vary the user association
threshold Jacthr to study the impact on the data increment
effect and determine a proper value setting in the following
comparison experiments.

Data Increment Varying JacthrJacthr. As shown in Figs. 4a and
4b, the implement of associated location inference brings
about at least 40% increase of valid trajectories per user
where over 50% of the users can benefit from the gain. As
for the trend, the amount of data increment decreases with
the value of Jacthr increasing. Still, the increment is consid-
erable from the view of quantity as Jacthr varies. In terms of
quality, we evaluate the effectiveness of hidden locations
generated by the associated location inference, and we vary
Jacthr to examine the hitting ratio on Foursquare and Twit-
ter. The results in Fig. 5 show that nearly 80% of the hidden
locations we inferred are highly associated with users’ origi-
nal locations (i.e., the locations are highly overlapping).
Only a small difference of the hitting ratio can be observed
between different settings, indicating that by utilizing the
hidden locations, nearly 80% relative performance gain will
be achieved, which demonstrates its effectiveness and
robustness over the sparsity issue.

Fig. 3. Complementary cumulative distribution function (CCDF) of the
number of check-in records/location frequent itemsets per user. (a) and
(b) compare the number of individual data Lu and the associated users
LAu , while (c) and (d) show the location frequent itemsets FAu which rep-
resents the maximum tree height per user.

Fig. 4. Data Increment w.r.t. varied Jacthr. We evaluate the extent to which
Jacthr compensates for (a) a single user and (b) the whole dataset.
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Performance Varying JacthrJacthr. According to the previous
description, the increase of Jacthr will reduce the proportion
of increment data. It can be observed in Fig. 6a that an
increasing Jacthr leads to the decrease of all the AUC, preci-
sion, recall and F1. In other words, a smaller Jacthr can bet-
ter compensate for the data sparsity. This observation can
be confirmed in Figs. 4 and 5. According to Eq. (3), the Jac-
card coefficient measures the commonality and the differ-
ence of the visited locations between users. So, as Jacthr
increases, fewer associated users would be involved, lead-
ing to less Au, LAu and Lhdn. On the other hand, the higher
correlation of Lhdn will result in the increase of the hitting
ratio. Nevertheless, precision and recall measure the pro-
portion of correctly returned user pairs and AUC reflects
the rankings of the positive case, which are affected by both
the quantity (regarding the data increment) and the quality
(regarding the hitting ratio) of the augmented data. As
shown in Fig. 6a, the overall performance is more affected
by the quantity of the data increment, and there are two
turning points Jacthr ¼ 0:08 and Jacthr ¼ 0:09, indicating
significant decrease of data increment around the turning
points where the rankings are less affected. As a conse-
quence, Jacthr is set to be 0.07 in the following experiments.

5.3 Impact of Parameters in CP-Link

To examine how parameters in our algorithm affect the UIL
results and obtain most suitable parameters, we select the
nearest neighbor percentage p of DP clustering and the simi-
larity threshold SD to study the impact.

Varying Nearest neighbor percentage pp. The value of parame-
ter p determines the cutoff distance dc, which directly affects
the calculation of local density r and relative distance di. A
larger cut-off distance dc allows more locations in the stay
region and lowers limit when dividing regions. Therefore,
the quality of clustering and the similarity between stay
regions depend on the selection of dc. Fig. 6b shows the per-
formance under different Nearest neighbor percentage p.
Our method achieves higher recall and precision as p
increases for the reason that a higher p leads to a higher dc
thus users may have larger common area and similarity due
to a larger extracted stay region, where more user pairs and
actual linked user pairs may be returned. Besides, AUC is
less affected as it mainly measures the ranking values of the
positive case which are more stable than Boolean values. As
a whole, the result is consistent with our envision that the
performance of the algorithm is not greatly affected by the
change of p, indicating that our algorithm is robust. To this
end, we set p ¼ 1:5 in our experiments.

Varying similarity SDSD. Since the varying SD has no effect
on the rankings, resulting in a constant AUC, we only
explore the impact on precision, recall and F1 here. As pre-
sented in Fig. 2, user account pair with the similarity
Sðu; vÞ > SD could be returned as the same user. Appar-
ently, a too large SD will filter more actual linked user pairs
but a too small SD will include more unmatched user pairs
in the returned result. To this end, we apply CP-Link under
different similarity SD to determine an appropriate value
where better performance is achieved at the equilibrium
between precision and recall. Fig. 6c plots the performance
curves in terms of precision, recall and F1 with varying SD.
With SD increasing, a larger SD will filter out more negative
user pairs; hence the number of correctly linked user pairs
and returned user pairs all decrease, and the latter is
expected to drop even more. As a result, the precision
increases more steeply than the decrease of the recall. It is
noticed that the value of F1 is determined by the combina-
tion of precision and recall, both of which are relatively
close when SD ¼ 0:8. To balance the performance and deter-
mine a proper threshold SD, we set SD ¼ 0:9.

5.4 Performance Comparison

The performance comparison is reported in Fig. 7a in terms
of Precision, Recall, F1, and AUC.1 As we can observe, our
proposed CP-Link substantially outperforms the state-of-
the-art under all evaluation metrics. Remarkably, our pro-
posed baseline simplified CP-Link also performs very well,
which benefits from jointly considering spatial-temporal
discretization, and the further improvement of CP-Link
over the baseline demonstrates the effectiveness of address-
ing data sparsity. We further show the precision-recall plot
in Fig. 7b, which again verifies that our proposed method
outperforms other techniques since CP-Link achieves a
higher precision and recall simultaneously. Compared to
simplified CP-Link, the user association LFP model in CP-
Link can deal with data sparsity better, which is more desir-
able for real-world applications where trajectory is sparse in
general.

To emphasize the significance of prioritizing spatial-tem-
poral discretization when designing algorithms and set forth
the preponderance of CP-Link, we explore the influence of
spatial-temporal resolution on the performance of each algo-
rithm. As has been noted, POIS is based on “encountering”
events which is sensitive to both spatial and temporal resolu-
tion while SIMP and GKR-KDE are susceptible to spatial res-
olution since they distinguish users based on “co-locations”
and grid respectively. For the sake of simplicity, we just cal-
culate the performance of these algorithms under varying
spatial resolution. Fig. 7c plots this relationship. As expected,
the performance of SIMP, POIS, and GKR-KDE fluctuate
when increasing spatial resolution where POIS and GKR-
KDE achieve their best performance under the spatial resolu-
tion of 0.8 KM, SIMP achieves its best performance under the
spatial resolution of 1.2 KM. On account of the consideration
of spatio-temporal discretization, the performance of CP-
Link is not affected by spatial resolution, the F1 of which
remains at a high constant value.

Fig. 5. Hitting ratio w.r.t. varied Jacthr. The results validate the efficacy of
the hidden locations generated by the associated location inference.

1. Some of the algorithms are not as good as demonstrated in [5],
[10] since we set a threshold SD as a constraint on returned pairs.
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We further evaluate the performance of CP-Link and CP-
Link+ on the same datasets and the results are reported in
Fig. 7 and Table 4. Not surprisingly, compared to CP-Link,
CP-Link+ achieves reasonably higher precision and recall but
is tremendously more time-consuming especially in the hit-
function computing process, where the consumed time grows
from 0.03 s to 85.65 s. Apparently, with a large quantity of
locations, the exponential increase of the time cost does not
worth the fractional growth of precision. The coarse-grained
design in CP-Link+ may fit better the scenarios with large
number of locations, and the speed-accuracy tradeoff is
adjustable by specific parameters in practical applications.

5.5 discussion on User Privacy

The implementation of UIL reveals the risk of user privacy
disclosure, as discussed in [16]. In our datasets, all the users
are anonymous and the trajectories are relatively sparse.
For example, as displayed in Fig. 8, the amount of the
returned user-pairs by CP-Link which generate less than 5
records is quite close to that of users in the origin datasets,
indicating that the linkage performance is not quite influ-
enced by the data sparsity issue. Actually our UIL method
can achieve de-anonymization with a precision of up to

0.68, which is quite effective mainly due to our associated
location inference.

To enhance the privacy protection against our CP-Link, we
can introduce Laplace noise into the original location records,
as done in [46], and the performance is shown in Fig. 7a. As
observed, the linkage performance degrades significantly
compared to CP-Link and thus adding noise can protect pri-
vacy well. Still, the precision is up to 0.4, which indicates that
CP-Link may still work even involving Laplace noise protec-
tion. Therefore, we may call for better anonymization techni-
ques, especially for the associated users, in the future.

5.6 performance of CP-Link With Attacked
Associated Location Inference

As mentioned before, the associated location inference is
critical to the performance of CP-Link. Here, we consider
the situation when the inference is attacked by replacing the

TABLE 4
comparison of CP-Link and CP-Link+

Algorithm AUC Precision Recall Time Cost (per user)

Hit Func. (I)DTW

CP-Link 0.82 0.63 0.60 0.03s 147s
CP-Link+ 0.85 0.71 0.70 85.65s 311s

Fig. 8. Complementary cumulative distribution function (CCDF) of the
number of check-in records per user. The green curve plots the CCDF of
the number of each user’s check-in records in the original dataset, while
the orange curve reports the CCDF of the number of linked user-pairs
generated by CP-Link.

Fig. 6. Performance w.r.t. different parameters in CP-Link. We evaluate the effect of (a) the user association threshold Jacthr, (b) the nearest neighbor
percentage of DP clustering p, and (c) the similarity threshold SD.

Fig. 7. Performance under different parameters with different methods. We first compare the overall performance in (a), followed by plotting the preci-
sion-recall curve in (b); and explore the spatial resolution influence in (c).
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inferred locations with noises (i.e., randomized locations).
We introduce varying proportion of noises into the pre-
dicted hidden locations and evaluate corresponding perfor-
mance of UIL under this simulated attack. The result is
presented in Table 5. With the noises increasing from 0 to
40%, the overall performance is slightly affected and the
precision decreases less than 0.1. The robust performance
depends on the noise management design in our DP cluster-
ing which screens out all the introduced noises and can thus
achieve satisfactory and robust clustering results.

6 CONCLUSION

In this paper, we have revealed the spatio-temporal discreti-
zation, a fundamental issue of existingUIL techniqueswhich
divides space and time into independent units when calcu-
lating the user similarity. We thus proposed CP-Link that
exploits continuous spatio-temporal check-in patterns based
on real-world sparse check-in records and calculates the sim-
ilarity in a continuous manner. To further tackle the data
sparsity issue, we designed a user-associated LFP model
where individual users’ sparse data is compensated by loca-
tion records of associated users within the same platform.
We also discuss a more effecitve version of CP-LINK at the
price of computing cost. Extensive experiments on real-
world datasets demonstrate the effectiveness and superiority
of CP-Link, which outperforms the state of the arts by more
than 20% in terms of the AUC.
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