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EgoMUIL: Enhancing Spatio-Temporal User Identity
Linkage in Location-Based Social Networks
With Ego-Mo Hypergraph

Haojun Huang *““, Fengxiang Ding*“, Hao Yin

Chen Wang

Abstract—Users tend to own multiple accounts on different
location-based social network (LBSN) platforms, and they typically
engage with diverse social circles on each platform within the same
locations. Consequently, linking these accounts across separate
networks becomes essential, playing a critical role in information
fusion. Previous works accomplishing user identity linkage (UIL)
utilize individual mobility records, which are significantly affected
by the issue of data scarcity. In this paper, we propose EgoMUIL, a
heterogeneous graph embedding approach specifically devised for
information propagation, aiming to alleviate the scarcity problem
to some extent. Considering that follow relations of respective
networks also hold great significance for the UIL task, we are in-
spired to enrich individual limited mobility records through follow
relations. Our preliminary research reveals that direct common
follow relations are quite insufficient. Since the followers with the
same spatio-temporal mode tend to have social connections, we first
mine closely-related users for each user through topology and lo-
cality similarity, generating respective cross-domain ego-networks.
Subsequently, we construct a heterogeneous ego-mo hypergraph
consisting of mobility and ego-networks. We propose a novel graph
convolutional network (GCN)-based approach to learn user rep-
resentations, which enables the aggregation of information from
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surrounding nodes, incorporating topological similarities, stay lo-
cality similarities, and co-occurrence frequencies. The resulting
embeddings provide comprehensive representations of users and
locations, capturing their characteristics and relationships across
platforms, which further facilitates the UIL task. Our experimental
results on real-world check-in datasets from Foursquare and Twit-
ter demonstrate that EgoMUIL outperforms the state-of-the-art
methods on the UIL task. Notably, EgoMUIL exhibits superior
performance in scenarios involving limited check-in records and
follow relations.

Index Terms—User identity linkage, graph learning, topology

similarity, link prediction, LBSN.

OCATION-BASED Social Networks (LBSNs) such as
L Twitter and Foursquare provide their respective users con-
venient platforms to generate and share their spatio-temporal
records registered at point-of-interests (POIs) [1], [2], [3]. An-
alyzing a user’s activity solely within a single LBSN plat-
form may fall short in providing a comprehensive understand-
ing of their activity characteristics. However, by incorporating
spatio-temporal information, which encompasses both the spa-
tial (location-based, e.g., check-ins) and temporal (time-based)
aspects of social interactions or activities, we can gain more
valuable insights into the complete mobility pattern of the user.
One of the most representative techniques is the spatio-temporal
user identity linkage (UIL), which enables data scientists and
service providers to unlock the latent features that they cannot
derive by mining user mobility on separate single platform, and
isuseful in various applications, such as user behavior prediction
and cross-domain recommendation [4], [5], [6], [7].

Several approaches have been presented to tackle the problem
of spatio-temporal UIL in LBSNs. A common practice is to align
the user’s trajectory data directly [8], [9], or transform nodes
into embedding vectors where identities and “encountering”
events are represented as vertices and edges respectively such
that linked identities are closer in the embedding space [10],
[11], [12]. For instance, Basik et al. [13] develop a summary
representation for spatio-temporal records and align entities
capturing the closeness in time and location. Recently, Feng
et al. [4] introduce a multi-modal embedding network to extract
representative features of individual’s locations and trajectories.

However, existing efforts often suffer in the scenario where
the generated check-in records per user are quite scarce, which

1. INTRODUCTION
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means there are not enough spatio-temporal data to guarantee
the quality of UIL. We analyze a set of widely used data pro-
vided by [14] to illustrate the deficiency of the data size per
user and validate the impact on several typical UIL methods
like DPLink [4], SIMP [15], POIS [16] and GKR-KDE [8]
(detailed in Section II). It turns out that data scarcity does
exist in commonly used datasets where users who generate less
than five records account for almost 80% in Foursquare and
Twitter platforms. Not surprisingly, these algorithms encounter
obstacle when dealing with users with scarce check-in records.
In particular, more than half of the users with less than five
records could not be matched correctly. As a result, the prac-
tical implementation of these algorithms has been significantly
hindered.

To address the data scarcity issue, in this paper, we present
EgoMUIL (Ego-network and Mobility joint learning for User
Identity Linkage), which can perform well even in the absence
of enough aligned check-in records. The underlying assump-
tion is that users with limited check-in records can be more
accurately matched when considering their close friends due to
their established social connections and corresponding physical
locations in the real world. Consequently, our approach aims to
incorporate both cross-domain ego-network factors and spatio-
temporal characteristics in order to better capture the uniqueness
of cross-domain users. These factors will be integrated into a
dynamic hypergraph embedding space to facilitate the final UIL
matching process.

Although the idea sounds straightforward, there still remain
several technical challenges. First, the available follow relation-
ships are often quite limited. Our research indicates that more
than half of users follow fewer than 5 accounts. Second, the
accounts that a user follows on different platforms can vary
significantly due to specific purposes. For example, individuals
may use Facebook primarily for communication with friends
and family, while focusing on peers and celebrities on Instagram.
Consequently, there is often little overlap between the accounts
followed on different platforms. Recognizing this, we observe
that social relationships can be flexible and extend beyond
simply follow relationships on social networks. Drawing on
earlier research demonstrating the potency of spatio-temporal
information as a predictor of social connections [17], our work
is inspired to explore the matching of users’ follow relations
across various social networks. Specifically, individuals ob-
served together frequently at the same place and time slot are
most probably socially related. Therefore, to address the issue
of limited following accounts, we incorporate spatio-temporal
associations as additional clues to match one user’s social
neworks and expand his relationships. Additionally, we propose
a novel method that combines topology structure and locality
area similarity to constrain and identify closely-related users
across different networks.

Our major contributions are summarized as follows.

* We identify the low overlap phenomenon in cross-domain
relation mining through empirical data analysis, which
confirms the inadequacy of existing solutions in addressing
the spatio-temporal UIL problem. To uncover potential
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TABLE I
DESCRIPTION OF DATASETS

Domain Users Edges  Check-Ins Date Range
Foursquare 2,970 42,390 44,915 2008.10-2012.11
Twitter 3,518 96,579 516,787  2010.01-2012.11

social relations, we propose a novel method to establish
the cross-domain ego-networks for users.

o We design an EgoMUIL framework to cope with the
data scarcity issue in UIL. Our framework leverages the
spatio-temporal properties of cross-domain ego-networks,
wherein an ego-mo hypergraph is formed and a graph con-
volutional network (GCN)-based embedding mechanism
is developed to learn user representations.

® We conduct extensive experiments using real-world check-
in datasets from Foursquare and Twitter, and the results
show that our EgoMUIL outperforms the state-of-the-arts
on the UIL task. Notably, EgoMUIL exhibits superior per-
formance in scenarios involving limited check-in records
and follow relations.

The remainder of this paper is organized as follows. We
present the motivation after empirical data analysis in Section II.
We describe the detail design of EgoMUIL in Section III, fol-
lowed by the performance evaluation in Section IV. Section V
reviews some related works, and finally Section VI concludes
the paper.

II. EMPIRICAL DATA ANALYSIS

A. Impact of Data Scarcity

We first analyze the available check-in data on a widely used
Foursquare-Twitter dataset pair provided by [14] (data statistics
are described in Table I) by implementing four state-of-the-
art spatio-temporal UIL algorithms, including GKR-KDE [8],
DPLink [4], SIMP [15], and POIS [16]. We plot the comple-
mentary cumulative distribution function (CCDF) curves of the
number of check-in records per user on the original raw data
(including the cross domain linked user pairs and the isolated
accounts), the ground truth (i.e., the cross domain linked user
pairs), and the linked user pairs returned by the above four
algorithms, respectively (c.f. Fig. 1).

The analysis of the Foursquare dataset reveals that a signifi-
cant portion of the raw data is covered by users with only a small
number of check-in records; approximately 45% of users have
less than five records. Not surprisingly, the scarcity of records
leads to varying degrees of performance degradation for these
UIL algorithms, with POIS being the most affected. Specifically,
in POIS, the identified users with less than five records account
for only about 20% compared to the 45% found in the raw
data. This gap represents the users who failed to be correctly
identified.

A similar trend is observed in the Twitter dataset, where
all four algorithms underperform when facing scarce check-in
records. The substantial performance degradation can be largely
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Fig.2. CCDF of the number of social ties and the proportion of common social
ties in Foursquare and Twitter datasets.

attributed to the insufficient user portrait created by the spatio-
temporal features of the scarce check-in records, resulting in a
higher possibility of identity mismatch.

As the scarcity of check-in records is an inherent challenge in
practice, we are motivated to explore additional features that can
enhance the UIL performance. These additional features may
compensate for the limitations imposed by the sparse nature of
check-in records and improve the accuracy of the UIL task.

B. Impact of Social Ties

Motivated by the network structure, which is widely used
to characterize a user’s social connections through follower-
followee relations (also known as social ties) [18], [19], we
pose the following question: Can we overcome the deficiency
of individual records by taking advantage of their associated
social ties? The core intuition behind this idea is that even if a
user possesses only a small number of check-in records, we can
link the individual to their corresponding group of social ties,
from which they may borrow additional or even substantial data
and features.

So we first analyze the general amount of social ties for each
user in Foursquare-Twitter datasets (c.f. Fig. 2(a)). Our findings
indicate that more than half of the users have less than five
social ties, which are inadequate to sufficiently support mining
user features. This scarcity of social ties poses a challenge in
characterizing users effectively. Next, we delve into the inves-
tigation of cross-domain common social ties for each user (see
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Fig. 2(b)). Notably, users with less than 50% common social
ties account for a significant 80% of all users in the Foursquare
dataset. Evidently, the presence of few common social ties is
insufficient to enhance the cross-domain identity characteriza-
tion, which necessitates the exploration and identification of
additional common social ties for individuals.

Upon initial consideration, the task seems analogous to link
prediction, which aims to reveal missing or potential connec-
tions. Consequently, we assess the feasibility of using three
typical link prediction methods on Foursquare-Twitter datasets
for the UIL task, including persona2vec (social ties only) [20],
walk2friends (mobility only) [21] and Vec2Link (both social
ties and mobility) [10]. We present the CCDF of the number
of predicted social links and common social links in Fig. 3.
Upon analyzing the results, we observe that, compared to the
original social ties, the number of predicted social links increases
to some extent. However, all three algorithms fail to enhance
the proportion of predicted common social links, and the pre-
dicted cross-domain social links of the same person exhibit
little overlap. Even the best-performing algorithm Vec2Link
only shows that 18% of users have more than 50% overlap,
indicating that almost half of the predicted cross-domain social
links are inconsistent for most users. As a consequence, the
predicted discrepant social links hold little meaning for user
feature augmentation in the UIL task, and none of the existing
link prediction methods can adequately satisfy the demand for
mining common social links.

C. Motivation

There are two major reasons behind the under-performance
of existing link prediction studies. First, current works focus on
predicting social links solely utilizing the social ties within a
single platform, while our intention is to explore the potential
cross-domain social links. In reality, users are likely to follow
different accounts in different domains, where direct contact
may not occur. Consequently, employing social ties indiscrimi-
nately results in little overlap among the predicted social links.
Second, most mobility-based link prediction methods concen-
trate on predicting a user’s mobility neighbors by modeling their
visiting patterns. However, with insufficient check-in records,
it becomes inaccurate to model user mobility behavior using
probabilistic models. Furthermore, a group of users with similar
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Pipeline of EgoMUIL. Given target users v and v from social networks A and B, a mining function is performed to construct a cross-domain ego-network

by filtering potential close friends from followings and mobility relations. A GCN is applied for learning user representation aggregating information in ego-mo

hypergraph and calculate the similarity for users.

frequently visited spots may not all be considered as close friends
due to the possibility of contingency.

These reasons emphasize the necessity of cross-domain re-
lationship mining, combining available social ties and mobility
overlap. This motivation drives us to leverage spatio-temporal
information from socially closely-related users to facilitate im-
proved user representation learning and linkage. To achieve
social tie correlation, our approach involves assigning each
follower-followee with a specific closeness metric using topol-
ogy similarity, which helps distinguish genuine social ties from
accidental connections. For mobility correlation, we propose to
extract stay localities for each user to stand for the mobility
feature and determine the closeness according to the overlap,
which can relieve the sparsity problem.

Hence, for a given user, we refer to users with a certain
mobility overlap as mobility neighbor, and those with social
tie topological connection as social neighbor. Nevertheless, we
impose mobility overlap restriction on the social tie topolog-
ical connection. Social neighbors that coincide with mobility
neighbors or have compact social tie topological connections
are considered closely-related social links.

III. EGOMUIL DESIGN

For two different LBSNs with corresponding two sets

of user accounts U :uq,us,..., U, and V :v1,vs,..., 0y,

EgoMUIL aims to find all cross-domain linked common
user pairs (u;,v;),¢ € (1,...,m),j € (1,...,n), given limited
check-in records of each user and the respective social relation-
ships Eyy and Ey, where Eyy and Ey represent the following
edges between the users. To achieve this, EgoMUIL involves the
following two main steps (c.f. Fig. 4):

1) Cross-domain ego-network mining: This step synthetically
utilizes topology structures from follow relationships and lo-
cality area similarity. It constructs a weighted cross-domain
ego-network that screens out closely-related users.

2) Ego-mo hypergraph learning and linkage: This step extends
the single-layer cross-domain ego-network to an ego-mo hyper-
graph. It utilizes GCN to aggregate neighbor features and output
linked user pairs by calculating the similarity. We summarize the
meaning of notations in Table II.

A. Cross-Domain Ego-Network Mining

To exploit the closely-related social links, we define a novel
local community structure as the cross domain ego-network,
which is based on the node-centric structure called the ego-
network [22]. It is a subgraph that only contains the social ties
of a specific node:

Definition 1 (Ego-network [22]): The ego-network of a user
u € U is a simple microscopic social network model consisting
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TABLE II
NOTATIONS AND CORRESPONDING MEANINGS
Notation | Meaning
U, Vv The set of user accounts of LBSNs
u; The i-th user account in U
vj The j-th user account in V'
Ey The following edges between users in U
Ey The following edges between users in V/
NI The set of following neighbors of user w
&l The social edges between user u and its followees
Er The mobility edges of user « from stay locatity
Cu The center set for user u
Cuyu The edges between different users
el The edges between different locations
€u,l The edges between a user and a location
Dy, The location embedding
Ts The sub-trajectory with location embeddings
H The user embedding

of u (called ego) and all the following neighbors N/ with whom
the ego has direct social ties £/, i.e., G : {u, N, &]}.

The ego-network is confined to an isolated platform where
the social ties are limited to mere online follower-followee
relationships. However, as mentioned in Section II, users tend
to follow different people in different networks, indicating that
follow relations alone may not be sufficient for relation mining.
Inspired by mobility-based link prediction studies [23], [24],
[25], we propose to explore additional cross-domain offline stay
locality connections to establish closely-related social links and
construct the cross-domain ego-network.

Definition 2 (Cross-domain Ego-network): The cross-
domain ego-network of a user u € U is a microscopic local
community where v is surrounded by a set of cross domain
neighbors A, with connected links &, i.e., G, = {u, Ny, Eu}.
Specially, the links &, are integrated by following edges &/
from online social ties and mobility edges £;* from offline stay
locality connections.

The basic idea here is that, the following/mobility relation
which is confirmed to have high overlap of following/mobility
association is considered as the highly-related relation. There-
fore, we design the topology similarity based on common neigh-
bors to characterize the follow relations, and utilize a density-
aware hierarchical clustering method to define the stay locality
similarity to reveal the mobility association. Still, following
neighbors which have high degree of closeness or are mobility
neighbors at the same time can be considered into cross-domain
ego-network, which is similar for mobility neighbors. In more
detail, following neighbors that have a high degree of closeness
or are mobility neighbors at the same time can be considered into
the cross-domain ego-network. The same principle applies to
mobility neighbors. This approach ensures that the cross-domain
ego-network incorporates users with significant commonality
in their social ties and mobility patterns, allowing EgoMUIL
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to capture meaningful and closely-related social links between
users in different LBSNs.

Topology Similarity: It is revealed that users with more com-
mon neighbors tend to have a tighter connection [26]. Also,
it is confirmed in a mature Adamic/Adar score research [27]
that the common neighbor z € N, N N, uf2 with fewer neighbors
contributes more to the relationship between u; and usy. Based
on these findings, we leverage the attribute of common neighbors
to define topology similarity as follows:

W NNT IV NN
E — , (D
7 Vi, [2
un N, WL, @

Simy(uy, ug) =

where u,, is one of the common neighbors of u; and us, | - |
is the cardinality of the set, and |N/|? is used to reduce the
weight of the effect of common neighbors who have too many
friends. This formulation allows us to capture the significance
of common neighbors in determining the relationship strength
between two users, emphasizing the importance of common
neighbors with fewer connections, which is more indicative of
a strong relationship.

Stay Locality Similarity: To model the mobility characteristics
of each user, we propose a method to cluster the visited locations
into stay localities based on their visiting frequency and density.
The idea is to identify users with high overlap of stay localities,
as they are likely to be associated users, referred to as mobility
neighbors. Our approach is different from most existing works
that measure the number of common visited places or model
the probability of users accessing certain locations using proba-
bilistic models. Instead, our method can effectively address the
effect of sparse locations and better describe a user’s scope of
activities.

The key to discovering stay localities is to determine the
clustering centers, which are expected to be the most frequently
visited locations with the densest surroundings. To achieve this,
we define the centers based on the access preference score, which
is determined by both the access frequency and the relative
density of the locations. For a user v with a location set Lu, the
access preference score IP;; of location Il € L, is calculated as

Py = pii, x fua, (2)

where f; is the visited frequency to I{ and pui, is the relative
density, defined as its Radial Basis Function approximation to
all other locations in £,,. It reflects p;; °s local density among all
locations in £, and is computed as

> exp(—lE = 1) 3)

el \i}

P, =

We select candidate centers L.qn, With the top-K highest
frequency relative density values and decide the final centers
based on the minimum distance criterion. For each candidate
center [’ € Lean,u, its minimum distance dlim,u to other

can,u
candidate centers is calculated as
= min I - lian,u|. 4)

dlb j . can,u
lcan,u eccan,u\{lf:an,u}

can,u
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A distance threshold d; is utilized to determine the final center
with dpr > d. After careful consideration and experimenta-
tion, we set d, = 2 km as displayed in Table III.

After obtaining the center set C, for user u, we use a
hypothesis inspired by the concept of reciprocal nearest data
points [28] to assign the remaining locations to their nearest
clusters. Specifically, starting from the centers, each location
is required to find its conditional nearest location (within the
distance of 1 km) to form a path until it reaches a closed loop.
Locations without conditional nearest neighbors are excluded
as noise. Locations along the path are considered as part of a
cluster. The illustration of this process is shown in Fig. 5.

Based on this hypothesis, points in the clusters tend to form
a uniform approximation of a circle rather than a narrow rect-
angle, due to the shortest path and conditional nearest location
principle. Each clustering is abstracted into a geo-coverage disk
disk! with its center ¢!, and the radius

(&)

where n is the number of locations in the clustering centered
on cft. For clusters with only one location, we set the default
radius » = 1 km. We define each clustering as a stay locality of
the user, which is abstracted into a geo-coverage disk for ease
of calculation. Then, the stay locality similarity between users
uy and ug can be calculated as the overlapping degree of their
geo-coverage disks

Z Z S{disk}, Ndisk],} ©)
S{disk: U diski,}

Simy(ug,us)
where a and b are the number of stay localities of u; and us, and
S{disk}, Ndisk],} and S{diskl, U disk], } are the areas of
intersection and union of their stay localities. Users with higher
stay locality similarity have a higher overlapping activity range.

With the topology similarity and stay locality similarity, we
define that user wuo is part of uq’s cross-domain ego-network
if their topology similarity and stay locality similarity are both
higher than the specific thresholds oy and o9 respectively. In
some cases, users may have a strong preference for a specific
platform, so we also consider users with particularly high single
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similarity, meaning that if two users have extremely similar cir-
cles of friends, they play an important role in characterizing each
other’s social circles. The thresholds o and o5 are chosen based
on careful consideration and are displayed in Table III. Using
this method, we can identify all cross-domain ego-networks for
all users.

B. Ego-Mo Hypergraph Learning

After obtaining the cross-domain ego-network for each user,
we further concentrate on identifying cross domain user pairs
with the help of additional spatio-temporal information. It re-
quires us modeling the spatio-temporal information and the
social links at the same time to support information aggregation.
Therefore, we come up with a novel ego-mo hypergraph which
contains both the user-user relation and the check-in records.

To accomplish a clearer structure where users can benefit from
adjacent users and locations, we divide the graph into two layers,
which is more formally defined as:

Definition 3 (Ego-Mo Hypergraph): The Ego-mo hypergraph
consists of two layers: the cross-domain ego-network layer and
the trajectory layer. These two layers are connected by user
access location incidents, which we refer to as ego-location
connections, and the locations themselves are connected by
co-occurrences. We define edges e, ,, and ¢; ; between homoge-
neous nodes as classical edges. In the ego-location connection
space, edge e, ; represents a hyperedge that signifies the con-
nection between a user and a location.

In the ego-mo hypergraph, each location is connected to
others, regardless of the resource (i.e., which social network
it belongs to), and this design is conducive to finding location
dependencies and transition patterns. Accordingly, each user can
be represented as vectors through location and social link aggre-
gation using GCN. Finally, users with adjacent vectors can be
considered to be the same person, facilitating the identification
of cross-domain linked common user pairs.

Ego-Mo Hypergraph Construction: To portray users’ mobil-
ity characteristics along with their neighbors for better informa-
tion learning, we construct an ego-mo hypergraph by merging
various types of information, including relations between user-
user, user-location and location-location.

For candidate cross-domain nodes w and wv, their ego-
companies G, and G,, are distributed in the ego-companies layer.
As calculated in Section III-A, for example, if u; is a neighbor
of w, their similarity is defined as

Sim(u, uq) = Simye(u, uy) + Simy(u, uy). (7)

To sample homogeneous nodes, after obtaining similarities of
all neighbors, we normalize them using a softmax function to
assign edges with comparable weights

exp(Sim(u, u’)) .
> wicg, exp(Sim(u,ul))

®)

Qg (10, ul) =
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In the ego-location connection space, events of users visiting
specific spots are represented. Since we are sampling homo-
geneous and heterogeneous edges separately, weights of user-
location edges, e.g., oy, are directly given by the visiting
frequency rather than participating in normalization.

The trajectories layer consists of access locations of all users
where the weights are provided by the co-occurring frequency
between locations. To achieve this, without loss of generality,
we first divide the whole trajectory of user u into segments
according to a time interval A¢, meaning locations in a common
sub-trajectory are considered to be co-occurring. Similarly, we
assign normalized weights «;; to edges between locations based
on the co-occurring frequency.

User and Location Representation Learning: As mentioned
earlier, both users and locations are treated as nodes capa-
ble of gathering information from their surrounding neigh-
bors. Therefore, both need to be embedded into vectors to
provide valid node representations for the following GCN.
We define the generated trajectory as the user node embed-
ding, which captures the location node embedding from all the
trajectories.

For the location embeddings, we draw inspiration from word
embeddings, as there is a similarity between location frequency
and word frequency, both of which follow a power-law distri-
bution [29]. To learn location embeddings, we mix the sub-
trajectories of all users indiscriminately and learn from the
context. Specifically, for each location [;, given its context
locations Ctx(l;,1) = {l;—m : litm}, wWe learn its embedding
®(1;) by maximizing the likelihood of p(®(l;)|Ctxz(l;,1)) which
is defined as

p(@(:)|Cta(li, 1))

- I

reCtz(ly)l)

exp{®(l) - ()}
Zl”eCtm(li,,l) exp{®(I")®(I")}

When learning the user embeddings, since treating trajectories
as a set of locations would loss the temporal information of
this user’s mobility pattern, we first separate the whole tra-
jectory into multiple sub-trajectories and leverage these sub-
trajectories to construct the user embedding. Then we feed the
sub-trajectories into a network to obtain sequential vector repre-
sentations. Since Long Short-Term Memory (LSTM) [30] is able
to capture the temporal patterns and dependencies, we naturally
select LSTM to obtain the user embedding with preserving
the spatio-temporal information. For an input sub-trajectory
with location embeddings 7's : ®;,, ®,,,..., ®;,, the LSTM
network calculates the unit activations continuously from ¢t = 1
to T

The LSTM updates its output h, based on the current input ®;,
and the previous hidden state i1, while a memory cell C} is
used to record the current state. The LSTM includes forget, input,
and output gates, which selectively filter and retain information,
allowing it to capture long-term dependencies in sequences. The
current memory state C is updated by selectively inheriting
the previous C;_; based on the output f; of the forget gate.
Additionally, a candidate cell state Zj'vt is generated using the
tanh activation function, and an input gate 7, is used to control

€))
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the flow of information. The input gate and candidate cell state
are calculated as follows:

it = o(Wip @y, + Wimhi—1 + Wi Cyq + b;) (10)
Cy = tanh(Wey®;, + Wemhi—1 + be). (11)

The current memory cell state C; is then updated as
Ci=f;©Cra+i: 0 Cp. (12)

The output gate o, is used to pass part of the memory cell C}
to the remainder of the network, and is calculated as

Ot = O—(Woxq)l,; + Womhtfl + Wocctfl + bo)~ (13)

Finally, the current hidden state h, is determined by the output
gate with the current memory cell state Cy, using the tanh
function to limit the value between 0 and 1

ht =0t © tanh(Ct). (14)

The trajectory embeddings are updated by updating the hidden
state of the LSTM, which is effective in handling long trajec-
tory sequences. Thus, we obtain users’ trajectory embeddings
through the final hidden state h;.

Node Representation Learning from GCN: GCN allows us
to extract rich information by propagating edge information
to aggregate neighbor node features. In our case, we use a
two-layer GCN to focus on the variable range of the ego-mo
hypergraph, where relations between user-user, user-location
and location-location are propagated. The propagation rule of the
method is

W = | DA, D, (15)

reR

This formula is derived from the Graph Fourier Transformation
where Symmetric normalized Laplacian [31] is applied, which
is currently utilized in graph theory as a matrix representation
of a graph, and is calculated as

[5Ys = E;O'SLﬁ;O'5, (16)
where L is the Laplacian matrix and the elements of the matrix

is
1, i=jandd(v;) # 0,
i # jandv; is adjacent tov;, ~ (17)

0, otherwise

where d,,, is the degree of vertex v; that represents the number
of linking edges.

In particular, we represent each node as a vertex in the graph,
and the corresponding edges are denoted by r € R = wu, ul, i,
which capture relations between user-user, user-location, and
location-location. In the GCN formula, hgl) represents the hid-
den layer of vertex V; in layer [, and h} corresponds to the input

layer. The matrix D, measures the corresponding degree matrix,
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which is a diagonal matrix in the form of
dy, o 0
S (18)
0 - dy,,

where the elements d,,, on the diagonal are the degrees of each
vertex that represent the number of edges associated. More-
over, o, is the weight of each relation edge obtained when
constructing the ego-mo hypergraph. v, is calculated by the
topology and stay locality similarity with a softmax function
normalization, «y,; is given by the user visiting frequency and
ay is defined by the co-occurring frequency. Besides, for ego-
location connection space r = ul, A, = A, where A, is the
adjacency matrix storing the adjacency information between
vertices. For cross-domain ego-network layer and trajectory
layer r € {uu,ll}, A, = A, + I which adds self-connections
when aggregating adjacencies.

Since the users within an ego-network usually have a high
closeness, and the users in different ego-network usually sep-
arate far away with each other, the users within the same
ego-network should have similar representations. In order to
encourage similar nodes to be adjacent in the embedding space,
we design a loss function for each node u, where we sample
nodes in its local context. The loss function is defined as follows:

Lw)=— > ilog(H,H,,). (19)

n;€Ctx, ,TeER

Here, X, represents the given weights for the three types of
relations: user-user, user-location, and location-location. The set
Ctz,, contains the sample nodes of node u, obtained through a
combination of breadth-first sampling and depth-first sampling
from node2vec. Node u can represent either a user or a location
node.

The objective is to minimize this loss function. Ultimately, the
final loss is computed as the average of all the nodes, including
users in U, users in V/, and all their access locations in Loc

Zue{U,V,Loc} E(“)
\U|+ |V|+ |Loc|

By optimizing the aforementioned loss function, users in close
proximity will exhibit similar embeddings across different LB-
SNEs.

To summarize, the process of learning the final representations
for users from the ego-mo hypergraph involves obtaining the
trajectory and location embeddings using LSTM. These em-
beddings are then fed into the two-layer GCNs, where local
information is aggregated and forwarded through the layers. The
final embeddings are trained by minimizing the loss function de-
scribed in (20). As a result, we obtain the vector representations
H,, for all users across networks, capturing the comprehensive
information from user-user, user-location, and location-location
relations.

Loss =

(20)

C. User Identity Linkage Across Networks

After obtaining the vectors H,, and H, for the focal pair (u, v)
representing the cross-domain nodes, we need to determine
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whether the two nodes belong to the same user. To achieve this,
we utilize vector similarity measures such as Cosine similarity
and Pearson correlation coefficient (PCC), which are denoted as

< H,, H, >
Cos(H,,H,)) = —————— 21
os(Hu: Ho) = 1 I, | 0
Hu_Fu>Hv_Fv
Corr(Hy, H,) = < - (22)

||H, — H,|| - [|H, - T,

where Cosine similarity principally measures the angle between
two vectors and PCC takes the translation invariance into ac-
count and realize the dimension correlation.

In our approach, we conduct both measurements on the final
outputembeddings, and the results are visualized in Fig. 9, where
Cosine similarity fits our approach better. Therefore, the final
similarity between user embeddings is decided using Cosine
similarity

Sy = Cos(Hy, Hy). (23)

Finally, given two sets of user accounts U : u1,usg, ..., Un
and V : vy, ve,...,v, from two social network platforms, we
calculate the Cosine similarity for each user pair. A threshold
Sa is used to decide whether two nodes belong to the same
person: if Sy, , > Sa, they are considered to belong to the same
user. We implement the linkage under varying threshold Sa and
determine an optimal value Sa = 0.95. This process helps us
identify the cross-domain linked common user pairs efficiently
and accurately.

IV. PERFORMANCE EVALUATION

A. Experiment Setup

1) Datasets: We use real-world check-in datasets from
Foursquare and Twitter in our experiments, which are provided
by [14], and are commonly adopted by recent works [5], [8], [15],
[16],[32], [33], [34]. We extract the spatio-temporal information
from the check-in records and retain the follow relationship
among users. Data statistics are shown in Table I in Section II,
with 1,644 linked ground truth user pairs.

2) Compared Algorithms: As EgoMUIL aims to generate
user embeddings in LBSNs using spatio-temporal information,
we compare our algorithm with the following methods for user
embedding generation. It is important to note that EgoMUIL
distinguishes itself by integrating data from different LBSNs
to derive user embeddings, a characteristic not shared by the
comparisons.

POIS [16]: This work exploits rare coincidences by making
use of the available spatio-temporal records, and a Poisson
process is leveraged to represent the sparse properties. The
similarity between user pairs is calculated as

Simy,, = Z Z b (UV (1)),

teT lel

(24)

where ¢; ; measures the probability of an “encountering” event
in location [ at time slot £.

SIMP [15]: This method presents a contact graph model for
multi-service ID linkage where all the IDs are mapped into the
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graph and the co-located events are considered as edges between
nodes. It employs Bayesian based optimal ID matching algo-
rithm to identify the most probable ID sets where the similarity
between user pairs is

Simu,v = P(X(u,v) = 1|T(V))

) Q(u,v) 0s)

D uenet (v) Q(u,v) + B(v)r(V)’

where N®!(v) represents a collection of ID accounts in V,
Q(u,v) is defined as the joint probability of the observation
r(V) and X (u,v) = 1, and §(v) is the probability that v does
not in N5 (v).

GKR-KDE [8]: This work proposes a grid-based structure
to organize locations. A kernel density estimation (KDE) based
method s then utilized to characterize individual spatial patterns,
where the similarity between user pairs is

(26)

k
Simu,v - Z f(guL G(U)? h’)v
i=1

where G (v) is the grid representation of user v; g,,, is the grid cell
ID of user u; f(gu,|G(v), h) is the probability density function,
which measures the distance between g,,, and G (v), and its radial
range is controlled by a bandwidth parameter h.

DPLink [4]: This method extracts and compares represen-
tative features from trajectories, and a co-attention mechanism
is then designed to cope with the low quality of mobility data.
The linkage is considered as a binary classification problem and
the binary cross entropy loss is employed as the objective loss
function.

DeepLink [35]: This approach encodes the users into a vector
representation in a semi-supervised learning manner, where only
the network structure is required. A mapping function ® is
learned by minimizing the following loss function:

Losse(u;),e(v;) = min(1 — cos(®(e(u;), e(v5)))), 27)
where e(u;) and e(v;) are the vector representation of the cross
domain users u; and v;, respectively.

Furthermore, to assess the impact of the cross-domain ego-
network mining module and the ego-mo hypergraph learning
and linkage module on the performance of our EgoMUIL, we
consider the following two baselines for the ablation study.

Baselinel: This baseline omits the utilization of the cross-
domain ego-network mining module, in which we identify ger-
mane users to form cross-domain ego-networks. To assess the
impact of this module, we directly designate the most closely-
related user as the identified user, while keeping the remaining
processes identical to those in EgoMUIL.

Baseline2: This baseline excludes the use of the ego-mo
hypergraph learning and linkage module, where we gather and
learn spatio-temporal information from neighbors to character-
ize individuals. In this baseline, we directly identify the follow
relations as neighbors without constructing cross-domain ego-
networks, while keeping the remaining processes the same as
that in EgoMUIL.
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TABLE III
TYPICAL PARAMETER SETTINGS

Item Setting Item Setting
radius 1 km dropout 0.5

ds 2 km epoch 2,000
At 6h Auw, Al 1

o1 61‘1 >\ul 0.9

o2 s Sa 0.95

3) Metrics: We evaluate and compare the performance of
existing methods though the following metrics:

Precision@k, which measures the accuracy of the linkage
function and is calculated as

PrecisionQk = Z LsuccessQk /n, (28)

where 1 success@k measures whether the returned users include
the correctly matched account.

MAP (Mean Average Precision), which is used to weigh the
ranking performance of algorithms and is defined as

n
MAP — (Z W) o,
Nt

i

(29)

where n,; is the number of returned users, and n,.;, is the rank
of the correctly matched identity.

Sen, and Sen ¢, which measure the probability of success-
ful linked users with a small number of check-in records and
social ties, respectively. They can reflect the sensitivity of the al-
gorithm to the data scarcity (Sen > 1 indicating non-sensitive),
and can be obtained by

Psucr<er

Sen, = 30)
qutT<e,.
PSUC P < Ef
Seny = "I 31)
grty<ey

where €, and € are the specific number of check-in records and
social ties; suc, and sucy are the records and social ties number
of correctly identified users; grt, and grt; are the records and
social ties number of users in ground truth. Ps,. ., is the
probability of users with less than €; records correctly identified.
We set €, = 5 and € = 5 to evaluate the linkage performance
with less than 5 records/social ties, unless otherwise specified.

4) Experiment Settings: We implement our EgoMUIL on
Tensorflow platform and we carry out LSTM as the default
recurrent network where both locations and trajectories are
represented as 256-dimensional vectors, which are fed into a
two-layer GCN with 128 units in the hidden layer. We utilize
Cosine similarity to identify user pairs. Other parameters set-
tings are summarized in Table III.

B. Performance of EgoMUIL

We classify the compared algorithms into traditional-based
methods (including GKR-KDE [8], SIMP [15] and POIS [16])
and deep learning-based methods (including DeepLink [35],
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DPLink [4] and EgoMUIL), on the basis of which we design
different scenarios to test the performance.

We evaluate the performance of all methods in terms of
accuracy (Precision@k), ranking performance (M AP), and
sensitivity to scarcity (Sen,, Seny), and the results are shown in
Fig. 6. As observed, EgoMUIL stands out among all methods. Its
exceptional performance can be attributed to its special design,
taking into account the scarce property of both check-in records
and followings. EcoMUIL demonstrates remarkable sensitivity
to scarcity, outperforming other methods in this aspect. To
further verify the robustness and superiority of EgoMUIL when
faced with few records and follows, we examine Sen, and Sen
of all methods, specifically focusing on the success of identified
Twitter records/follows in Fig. 7.

Furthermore, traditional-based methods decide trajectory
similarity by aligning available locations, which are coarse-
grained through bins or grids. As a consequence, these methods
are sensitive to spatial resolution. To investigate this sensitivity,
we apply these algorithms at varying spatial resolutions and
analyze the results, as shown in Fig. 8(a). We find that the
grid-based GKR-KDE is most affected, and its performance
decreases significantly with the increase of spatial resolution. In
addition, we test the performance of deep learning-based meth-
ods under various embedding sizes, as illustrated in Fig. 8(b).
The results show that DPLink and DeepLink perform best
with an embedding size of 128, and their performance declines
slightly as the embedding size increases. This indicates that a
small number of dimensions is sufficient for these algorithms.
On the other hand, our algorithm, EgoMUIL, performs better as
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Fig.8. Performance w.r.t. varied parameters: (a) Traditional methods; (b) Deep
learning based methods.

the embedding size increases due to its capability of aggregating
ample information from neighbors.

C. Impact of Different Settings

First, when learning the representation of nodes, we ob-
tain local context samples of the user-user, user-location, and
location-location relations using Node2Vec based on the con-
structed cross-domain ego-network. We consider the frequency
of user visits and the number of simultaneous occurrences in
a trajectory when generating these samples. To validate the
advantage of this design, we compare our method’s performance
with arandom walk-based approach, which samples the relations
of nodes without considering weights. The results are visualized
in Fig. 9(a). Our method outperforms the random walk-based
approach in terms of accuracy and ranking, while achieving
equivalent performance with respect to Sen, and Seny. This
indicates that our approach effectively utilizes the local con-
text information and takes advantage of the weighted samples,
leading to improved performance in user representation learning
and linkage. The results further demonstrate the superiority of
EgoMUIL in the UIL task, highlighting its capability to leverage
valuable information from the constructed cross-domain ego-
network.

Second, to evaluate the utility of the two modules in our
EgoMUIL, we compare the performance of EgoMUIL with
aforementioned two baselines (c.f. Section IV-A2) on the same
dataset. The results of these separate evaluations are shown in
Fig. 9(b). The results indicate that both baselinel and baseline2
underperform in terms of ranking and accuracy compared to
the complete EgoMUIL approach. Still, they also demonstrate
advantages in different aspects, where baselinel outperforms
in scenarios with few check-in records, and baseline?2 is less af-
fected by scarce follow relations. These benefits can be attributed
to the superior design of the respective modules.

Third, when calculating the final similarity and identifying
users, we utilize the widely used Cosine similarity. Additionally,
we consider using PCC as an alternative method to measure the
correlation coefficient of two vectors for similarity calculation.
To compare the performance of Cosine and PCC, we present
the results in Fig. 9(c). The comparison shows that both Cosine
and PCC measurements yield corresponding performance, with
Cosine slightly outperforming PCC. Although both similarity
metrics are suitable for vector similarity calculation, Cosine

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on July 03,2024 at 09:01:48 UTC from IEEE Xplore. Restrictions apply.



HUANG et al.: EGOMUIL: ENHANCING SPATIO-TEMPORAL USER IDENTITY LINKAGE IN LOCATION-BASED SOCIAL NETWORKS

8351

Node2Vec 7

1.0} |EEE]Random walk

(a) Node2Vec v.s. Random Walk.

o
/ :
: . :
5 0.5 % B 0.5
n
0.0 i i % %EEE 0.0
“Precision@k MAP Sta_r Sta_f Precision@k MAP

(b) Cosine v.s. PCCs.

o o =
n ) o

Performance

o
w

0.0
Precision@k MAP
(c) LSTM v.s. GRU.

Fig. 9. Performance under different settings in EgoUIL.
1
-©-MAP 0.8 08 T
—B- Precision@k -
0.9 2
9 o 8 o 0.
g g £ 075 g
£ Eo08 E E
k] k) < <€ 0.6
a“.h’ 06 g K -©—-MAP é
0.
07 —e/e——%\‘ 4 —E Precision@k ir&iimm
[ 05 g
05
06 0.6
0.1 02 0.3 04 0.5 250 500 1000 2000 4000 0.90 0.92 0.94 0.96 0.98 0 0.1 03 0.5 07 09 1
Drop_out Epoches Sy ul
(a) Performance w.r.t. varied (b) Performance w.r.t. varied  (c) Performance w.r.t. varied A,;. (d) Performance w.r.t. varied Sa.
Drop_out. Epoches.
Fig. 10.  Performance w.r.t. different parameters in EgoUIL.

demonstrates a slightly better performance in the context of our
EgoMUIL framework.

Finally, when learning sequential vector representations of
sub-trajectories, we use LSTM to complete the task. Another
representative recurrent neural network, the Gate Recurrent Unit
(GRU), features only one gate, which requires fewer parameters
compared to LSTM. To compare their effects, we replace LSTM
with GRU in EgoMUIL and examine the linkage results, as
shown in Fig. 9(d). While GRU is computationally efficient
due to its reduced number of parameters, LSTM demonstrates
better performance in learning sequential vector representations
of sub-trajectories and achieving superior linkage results in the
UIL task.

D. Impact of Different Parameters

Complementary to different settings, we also test the perfor-
mance under varying training parameters in GCN: training times
epoch, dropout and the weight of user-location relations A,; in
(19). Specifically, in EgoMUIL, we set A, =1 and Ay =1
directly. Additionally, the returned user pairs are largely dictated
by the similarity threshold Sa in (23). We evaluate the impact
of varying S and training parameters in Fig. 10, and the results
indicate that:

e EgoMUIL can achieve a satisfactory performance within

a certain range of drop out.

e With varying training times epoch, EgoMUIL converges to
its best result when epoch reaches about 2,000 times. Be-
yond this point, it may incur overfitting problems. Hence,
an appropriate number of training times epoch is sufficient.

e When sampling the heterogeneous relations from the ego-
mo graph, the weight X,,; greatly affects the ranking per-
formance. EgoMUIL achieves its best performance with
A = 0.9, where valuable heterogeneous nodes are ade-
quately sampled.

e The threshold Sa significantly affects the ranking and
accuracy performance. We set a compromise value of
Sa = 0.95 as the final choice.

In summary, the performance of EgoMUIL is influenced by

various training parameters, and finding the right balance is
crucial for achieving better results.

V. RELATED WORK
A. Spatio-Temporal UIL

We classify spatio-temporal UIL algorithms into two cate-
gories: traditional methods and embedding-based methods.

Traditional methods typically utilize location-based similarity
measurements by aligning users’ trajectories and transforming
locations into regions using bins or grids. These approaches
often adopt the maximum weight mobility matching model [16],
the location-based contact graph [15], or the signal-based sim-
ilarity [36] on each user pair to capture their contact. Along
this line, researchers further introduce a locality-sensitive hash-
ing based mechanism [13], [37] to reduce candidate pairs for
matching, and a kernel density estimation based solution [38]
is proposed to model individual-level location data aiming at
alleviating the data sparsity problem. In general, these methods
calculate the location similarity relying on the visiting frequency
or approximate co-occurrence/co-location, which are inefficient
when dealing with the location sparsity issue.
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Embedding-based methods, on the other hand, focus on learn-
ing the transition relations of locations instead of handcraft
mobility features. These methods recognize the significance
of the order of locations appearing in a trajectory, which is
generally overlooked by traditional methods. These methods
try to make full use of the sequence feature of trajectories by
embedding them into low dimensional vectors utilizing para-
graph2vec [39] or recurrent neural network based deep learning
algorithms [4]. Motivated by the the over-looked time-evolving
issues in RNN-based approaches, an attention mechanism on
graph embeddings [40] is introduced for time-evolving analysis,
and a two-tier graph contextual embedding framework [41] is
designed to capture the long-range dependencies. To circumvent
asymmetric information across platforms, Shao et al. [42] pro-
pose to utilize text-location information with a 3D convolution
neural network.

With the development of Graph Neural Network (GNN),
many researchers propose the representation-based network
alignment method to use GNN to generate node embeddings.
Zhang et al. [43] leverage GNN to generate the embeddings
of network nodes and then align different networks. With
their alignment, they could align the common users in both
Foursquare and Twitter. Zheng et al. [44] find that the similarities
between unlabeled cross-network user pairs have significant
impact on the accuracy of UIL. Therefore, they introduce the
weakly supervised training manner into GNNs and propose
JORA, which can learn self-adaptive similarities for unlabeled
user pairs. Long et al. [45] propose DegUIL, which can learn
high-quality node embeddings for the nodes with few neighbors.
Then Tang et al. [6] propose a GNN-based encoder Adaptive
Graph Attention Network, named AdaGAT, which can generate
the user embedding with the user characters and following
topology in the social networks. Recently, to tackle the issue
of missing inference edges during training in link prediction
scenarios, Tan et al. [46] propose a framework that can automat-
ically, personally, and inductively identify optimal subgraphs for
different edges when performing UIL.

On the whole, in spite of the pre-training designed for sparse
trajectories, all these methods underperform with scarce mobil-
ity records.

B. Network-Based UIL

Focusing on the network structure of across domains, re-
searchers also attempt to accomplish UIL through mining
user follow relationships. In [47], Liu et al. learn the fol-
lower/followee representation for each user using network em-
bedding method which can preserve the proximity of user as-
sociations, while in [35], [48] the local and global structures
are captured by encoding the network into space in a semi-
supervised learning manner. Recently, graph neural networks
provide a new way for user representation learning and linkage.
To alleviate the semantic gap on different platforms, a hybrid
graph neural network is proposed [49] to unify the intra-user
and inter-user representation learning. Chen et al. [50] devise
multi-level graph convolutions, considering both local structure
and hypergraph structure to prevent the cold-start issue instead
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of directly modeling the network structure itself. Jiao et al. [51]
propose a hierarchical graph attention based network embedding
framework to simultaneously perform link prediction and cross-
domain linkage. Nevertheless, all these methods are confronted
with limited follow relations and the diversity social structure
across networks.

C. Link Prediction

Link prediction aims to infer the missing links from the
obtained social network structure [20] or learn the potential
associations from their mobility patterns [52]. To better exploit
the latent link between users, Zhou et al. [10] present a novel
approach that combines social relations and mobility prefer-
ences. They simultaneously employ a probabilistic factor model
and a network embedding method to enhance link prediction
performance. Yang et al. [53] propose a random-walk-with-stay
scheme that preserves n-wise node proximity while learning
check-ins from the constructed hypergraph. In [54], a real-time
algorithm based on changes in user communities is introduced
which can reveal the importance of community indicative char-
acteristics. A more recent approach by Zhang et al. [55] focuses
on capturing the continuity and sequentiality of trajectories.
They propose a multiview matching network that learns location,
time-series, and relation simultaneously. While these methods
are enlightening within a single platform, they may not be
directly suitable for cross-domain link prediction.

Compared with existing studies, our approach focuses on re-
solving the linkage accuracy defect with scarce mobility records.
Inspired by the network-based methods, the follow relations are
utilized to compensate for the limited individual trajectories.
Additionally, instead of conducting link prediction solely based
on an isolated network, we incorporate mobility similarity to
renovate the relations. This enables us to reveal closely-related
cross-domain common relations, which in turn facilitate user
characteristic learning and linkage.

VI. CONCLUSION

In this paper, we have presented EgoMUIL, a novel graph
representation learning method designed to address the data
scarcity issue by effectively aggregating neighbor information.
Particularly, we observe significant differences between user
followings across networks, which cannot be directly considered
as neighbors. As a solution, we propose a novel approach that
repairs and extends the existing follow relationships by combin-
ing topology structure and stay locality similarity. This novel
method results in a two-layer heterogeneous ego-mo-graph,
where user-user, user-location, and location-location relations
are clearly distributed. Based on the graph, we first learn the
initial trajectory and location embedding vectors to stand for user
nodes and location nodes, and then propose a two-layer GCN
learning technique that can propagate information layer-wisely
and learn the final embeddings for users. Finally, the output
vectors is computed by the cosine similarity for identifying the
matched nodes. We conduct extensive experiments, and the re-
sults indicate that our EgoMUL performs much better comparing
with existing works in terms of both ranking and accuracy. In
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our future works, we aim to explore more intricate scenarios
involving heterogeneous or incomplete user data across different
LBSNs, with the goal of enhancing the robustness and effective-
ness of our work.
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