
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024 427

Gradient-Leaks: Enabling Black-Box Membership
Inference Attacks Against Machine

Learning Models
Gaoyang Liu , Member, IEEE, Tianlong Xu, Student Member, IEEE, Rui Zhang , Member, IEEE,

Zixiong Wang, Student Member, IEEE, Chen Wang , Senior Member, IEEE,
and Ling Liu , Fellow, IEEE

Abstract— Machine Learning (ML) techniques have been
applied to many real-world applications to perform a wide range
of tasks. In practice, ML models are typically deployed as the
black-box APIs to protect the model owner’s benefits and/or
defend against various privacy attacks. In this paper, we present
Gradient-Leaks as the first evidence showcasing the possibility
of performing membership inference attacks (MIAs), with mere
black-box access, which aim to determine whether a data record
was utilized to train a given target ML model or not. The key
idea of Gradient-Leaks is to construct a local ML model around
the given record which locally approximates the target model’s
prediction behavior. By extracting the membership information
of the given record from the gradient of the substituted local
model using an intentionally modified autoencoder, Gradient-
Leaks can thus breach the membership privacy of the target
model’s training data in an unsupervised manner, without any
priori knowledge about the target model’s internals or its training
data. Extensive experiments on different types of ML models with
real-world datasets have shown that Gradient-Leaks can achieve
a better performance compared with state-of-the-art attacks.

Index Terms— Machine learning (ML), membership inference
attack (MIA), black-box model, autoencoder.

Manuscript received 25 February 2023; revised 26 July 2023 and 16
September 2023; accepted 4 October 2023. Date of publication 16 October
2023; date of current version 22 November 2023. This work was supported
in part by the National Natural Science Foundation of China under Grant
62272183, Grant 52031009, Grant 62171189, and Grant U20A20181; in part
by the Key Research and Development Program of Hubei Province under
Grant 2023BAB074 and Grant 2021BAA026; in part by the Special Fund for
Wuhan Yellow Crane Talents (Excellent Young Scholar); in part by Georgia
Tech through USA NSF CISE under Grant 2302720, Grant 2312758, and
Grant 2038029; in part by the IBM Faculty Award; and in part by CISCO Edge
AI Program. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. George Theodorakopoulos.
(Corresponding author: Chen Wang.)

Gaoyang Liu is with the Hubei Key Laboratory of Smart Internet Tech-
nology, School of Electronic Information and Communications, Huazhong
University of Science and Technology, Wuhan 430074, China, and also
with the School of Computing Science, Simon Fraser University, Burnaby,
BC V5A 1S6, Canada (e-mail: liugaoyang@hust.edu.cn).

Tianlong Xu, Zixiong Wang, and Chen Wang are with the Hubei Key
Laboratory of Smart Internet Technology, School of Electronic Information
and Communications, Huazhong University of Science and Technology,
Wuhan 430074, China (e-mail: tlxu@hust.edu.cn; zixwang@hust.edu.cn;
chenwang@hust.edu.cn).

Rui Zhang is with the Hubei Key Laboratory of Transportation Internet of
Things, School of Computer Science and Technology, Wuhan University of
Technology, Wuhan 430070, China (e-mail: zhangrui@whut.edu.cn).

Ling Liu is with the College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332 USA (e-mail: ling.liu@cc.gatech.edu).

Digital Object Identifier 10.1109/TIFS.2023.3324772

I. INTRODUCTION

WITH the recent growth in computing power and
improvement in algorithms, Machine Learning (ML)

has become a core component of many real-world applications
such as image recognition [1], natural language translation [2]
and online advertising [3]. Driven by the success of ML,
increasing companies and organizations integrate ML compo-
nents into their services and products to improve the quality
of service. However, recent works have demonstrated that
ML models are vulnerable to various security and privacy
attacks, such as the adversarial attacks [4], model stealing
attacks [5], model inversion attacks [6], and privacy violation
attacks [7].

In this paper, we concentrate on the so-called membership
inference attacks (MIAs) against ML models, which aim to
determine whether a data record (i.e., the target record) was
used as part of the training dataset of a given ML model
(i.e., the target model) [8], [9]. A successful MIA against
an ML model signifies that the privacy of the training data
was not sufficiently protected when the trained ML model
is released. For instance, a research group releases an ML
model which can predict the medicine dosage for a certain
disease. By knowing that an individual’s medical record was
used to train this ML model, the attacker can thus infer that
this individual is more likely to suffer from the corresponding
disease.

Despite extensive research efforts on MIAs in recent years,
most if not all existing works assume that the attacker has
the prior knowledge of either the target ML model’s internals
(e.g., the model structure1 [8], [10], parameters [11], [12],
or the training loss [13]), or its training data (e.g., data
samples [8], [14], [15], or data distribution [16]). In practice,
developing an ML model is a product of massive costs and
expertise efforts, including data collection, dataset annota-
tion, model selection, parameter fine-tuning, etc. Therefore, the
ML model is typically deployed as a black-box for protecting
the model owner’s benefits. For instance, machine learning as
a service (MLaaS) platforms, including Google AI Platform,2

1MIAs specially designed for a particular ML model (e.g., deep learning
models) are also regarded to have priori knowledge of the model structure.

2https://cloud.google.com/ai-platform

1556-6021 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 22,2023 at 05:25:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2566-9360
https://orcid.org/0000-0002-4255-4680
https://orcid.org/0000-0003-1963-4954
https://orcid.org/0000-0002-4138-3082

428 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Amazon ML,3 and BigML,4 usually deploy their ML models
as the black-box: neither the model owner nor the users can
download the model; instead, they can only access the model
through the provided black-box API. As a consequence, the
applicability of existing MIAs is largely under restrictions, and
it is so far unclear how to launch black-box MIAs for real-
world attackers.

In this paper, we present Gradient-Leaks as the first evidence
that it is possible to perform MIA with mere black-box access.
Gradient-Leaks is based on the observation that each data
record in the training set can influence the ML model’s
parameters in order to minimize its contribution to the model’s
training loss. The gradient of the loss on a target record
with respect to this trained model thus indicates how much
and in which direction the model needs to be changed to fit
to the target record. When the training process completes,
the trained model can fit to the whole training set with the
smallest training loss. In this case, the training data’s gradient
will converge to a small magnitude in a certain direction.
In contrast, the magnitude and direction of the gradient for a
record that has not participated in the target model’s training
would be obviously different from those of a training record.
As such, by leveraging the gradient difference between the
data the target model trained on and that the target model
meets for the first time, Gradient-Leaks can thus infer which
record has been used to train the target model.

Although the basic idea sounds simple, Gradient-Leaks
confronts two major challenges. The first challenge lies in
the difficulty in obtaining the gradient of the target record
directly, since we have no priori knowledge of either the
target model or its training data, except for the black-box
prediction access. Inspired by recent advances in explain-
able ML field [17], [18], [19], we propose to construct a
local ML model around the target record which can locally
approximate the target model’s prediction behavior, and treat
the target record’s gradient with respect to the substituted
local model as the gradient approximation of the target
record.

The second challenge is that it is difficult to perform MIA
well by directly leveraging the approximate gradient difference
between the training data and the testing data, as the gradient
of the target record mainly contains the explicit information
about model optimization, while the membership information
is usually hidden behind it [7]. To address this challenge,
we intentionally modify the structure of an autoencoder to
learn a representation for the approximate gradient, which
is able to extract the implicit knowledge about the mem-
bership information. This representation is further utilized
as features to distinguish the member from non-member
records.

We summarize our major contributions as follows.
• We present Gradient-Leaks, an MIA against black-box

ML models without requiring the priori knowledge about
the target model or its training data, but only using the
model’s prediction interface.

3https://aws.amazon.com/machine-learning
4https://bigml.com

• We show how a local linear ML model on the target
record can be adopted to derive its gradient approximation
to facilitate the black-box MIA.

• We propose to construct the inference attack model in an
unsupervised manner, based on the extracted membership
features from the gradient approximation using a modified
autoencoder, which relaxes the assumption of information
about the training data.

• We evaluate the performance of Gradient-Leaks against
five different types of ML models (two of them instanti-
ated by real-world MLaaS platforms), and compare with
three representative MIAs on four realistic datasets. The
results show that Gradient-Leaks performs better than the
state of the arts, even with mere black-box access.

The remainder of this paper is organized as follows.
Section II overviews related works on MIAs. Section III
presents the threat model. Section IV describes the design
of Gradient-Leaks, followed by the performance evaluation
in Section V. Finally, Section VI concludes this paper. The
code of Gradient-Leaks has been released for reproducibility
purposes.5

II. RELATED WORK

In this section, we briefly overview recent advances in
MIAs, according to different priori knowledge required by
the attacker (c.f. Table I). Generally, there are two categories
of assumptions on the required knowledge: regarding the
target model (including the model structure, hyper-parameters,
and training loss), and its training data (including the data
distribution, and part/all of the training samples).

A. Attacks With Both Target Model and Training Data

Shokri et al. [8] present the first MIA dubbed Shadow
Attack against ML models. They construct multiple shadow
models to mimic the prediction behavior of the target model,
and the shadow models’ outputs are further used to train the
attack model. This attack requires the priori knowledge about
the target model’s structure and its training data’s distribution
(or a part of its training data).6 In ML-Leaks [14], Salem
et al. extend Shadow Attack and show that it is possible
to perform the same attack with only one shadow model
instead of multiple shadow models. They still need the target
model’s structure and part of the training samples. Recently,
Li et al. [15] propose an instance-probability attack with
multiple shadow models trained on the data that has the
same distribution as that of the target model’s training data.
They use the prediction probability of these shadow models to
extract the membership feature to perform the MIAs. Song and
Mittal [20] propose M-Entropy Attack, where they develop

5https://www.dropbox.com/s/pi2xdzlow8as36s/Gradient-Leaks-Code.zip?
dl=0

6As for the model structure knowledge of the target model, when attacking
MLaaS platforms, although Shokri et al. cannot explicitly get the structure
of the target model, they can get the shadow models with the same structure
as the target model by leveraging the same MLaaS platform. In addition,
according to their released code (https://github.com/csong27/membership-
inference), when attacking NN models, Shokri et al. directly use the target
model’s structure to train the shadow models. Therefore, we also treat this
scenario as the attacker with the structural information of the target model.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 22,2023 at 05:25:52 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: GRADIENT-LEAKS: ENABLING BLACK-BOX MIAs AGAINST ML MODELS 429

TABLE I
SUMMARY OF EXISTING MEMBERSHIP INFERENCE ATTACKS

a modified prediction entropy metric that incorporates the
ground truth label of the target record. They then determine
distinct threshold values for each class label, which are learned
using the shadow training technique employed in Shadow
Attack [8]. Subsequently, they classify the target record as a
member if its modified entropy is below the preset threshold.
Choquette-Choo et al. [22] consider a more restricted scenario
in which the target model only returns the predicted labels and
propose a label-only MIA. Their MIA first trains a shadow
model on a dataset drawn from the same distribution of the
target model’s training set and then utilize adversarial attacks
to estimate the record distance to the decision boundary of the
shadow model to perform the attack.

Except for leveraging shadow models, some researchers
use other information of the target model to launch MIAs.
Wu et al. [11] use the target model’s parameters and an
auxiliary dataset to compute the membership probability, and
then select a threshold to obtain the attack model. This
auxiliary dataset consists of samples from the training/testing
datasets and the ground truth of each sample’s membership
property. Yeom et al. [13] propose a simple MIA by leveraging
the training loss of the training data. They first query the target
model with all training data, and obtain the average training
loss which serves as the threshold for MIA. This work requires
all training data and the corresponding training loss.

Liu et al. [21] exploit the membership information from the
training process of the target model and design a new MIA,
called TrajectoryMIA. They use the knowledge distillation
technique to mimic the training process of the target model,

and then extract the membership information from the loss
of the target records on the intermediate models at different
distillation epochs with the loss from the given target model.

B. Attacks With Mere Target Model

Since requiring information on both the target model and
its training data is impractical to some extent, many studies
concentrate on relaxing such assumptions, and seek for tech-
niques given mere the target model’s internals. Nasr et al. [12]
present two types of MIAs against deep learning models by
exploiting the MIA vulnerabilities of the stochastic gradient
descent (SGD) algorithm. For training the attack model, one
MIA employs the internal computation results of the target
model (including the activations and gradients on the target
data record), and the other leverages the activation outputs of
individual layers of the target model. To perform such attacks,
they need the knowledge about the target model’s internal
structure and parameters. Melis et al. [25] also design an MIA
for deep learning models using the internal computation results
(i.e., the gradients of the embedding layers). The non-zero
gradients of the embedding layers reveal which features appear
in a batch and are used to infer the record membership, but
require the parameters of the target model’s embedding layers.

In addition, some studies focus on performing MIAs on
generative models. Hayes et al. [23] present an MIA against
generative models. They create a local copy of the discrim-
inator of the target model, and then leverage the prediction
of the copy model on the target record to perform the attack.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 22,2023 at 05:25:52 UTC from IEEE Xplore. Restrictions apply.

430 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

This MIA requires the inner parameters of the target model.
With white-box access, Liu et al. [24] propose an MIA
named co-membership attack against generative models. They
optimize an attacker network to search for the latent encoding
to reproduce the target record, and then the reconstruction error
is used directly to infer the membership.

Although many MIAs have been proposed, there is still a
lack of theoretical analysis. Sablayrolles et al. [10] recently
leverage a probabilistic framework to derive a formal analysis
for their optimal MIA attack, which relies on either the target
model’s training loss or its parameters.

C. Attacks With Mere Training Data

Some studies also attempt to design MIAs with mere
training data information. Truex et al. [26] demonstrate how
Shadow Attack can be leveraged in adversarial ML settings.
They assume that the attacker has samples of his own which
can be used as seeds for shadow data generation, and expose
MIA vulnerabilities through the perspectives of data skewness
and adversarial learning. Instead of constructing the shadow
model, Liu et al. [16] train a mimic ML model based on a
synthetic dataset with the same distribution of the training
data. Without any knowledge about the target model, they
propose an imitation method based on the generative adver-
sary networks to mimic the prediction behavior of the target
model to perform MIAs. In ML-Leaks [14], Salem et al. also
propose to construct a set of ML models using data with the
same distribution of the target model’s training data, each
with a different classification algorithm, and combine these
models together as one shadow model to launch MIAs. Li
and Zhang [29] propose Transfer Attack which leverages the
intuition that the transferability property holds between the
shadow model and the target model. They input the target
record into the shadow model and calculate its loss with the
ground truth label, and then determine the record is a member
if the loss value is smaller than a threshold.

Since the logits of the target model provide more pre-
diction information, Yan et al. [28] present L-Leaks which
could approximate the logits of the black-box target model
to improve the similarity between the substitute and target
models. Then L-Leaks allows the attacker to use the substitute
model’s information to perform MIAs.

Except for constructing substitute models, Carlini et al. [27]
develop a Likelihood Ratio Attack, which trains several mod-
els on the data that has the same distribution as that of the
target model’s training data. Then they estimate the prediction
distributions of models trained with and without a certain data
record, where MIA is performed by comparing the prediction
of the target model with the estimated distributions.

Summary: It is observed that existing MIAs require
pre-knowledge of either the target model’s internals or its
training data. In practice, however, the model owner often
only provides the black-box prediction API to users. It is
therefore unclear if MIAs can be launched with only black-
box information. Against this background, we put forward to
leverage the gradient approximation to extract the membership
features to facilitate unsupervised MIA, without knowing

any prior information but the mere black-box API, thereby
revealing the possibility of black-box membership leakage.

III. THREAT MODEL

We consider an adversary who seeks to determine whether
or not a data record was used to train the target ML model.
The adversary is assumed to have only the black-box access
to the target model. Thus the adversary has no access to the
target model internals or its training data, and can only query
the target model with a data record to obtain the corresponding
prediction probability vector. The details of our threat model
are described as follows.

A. Target Model

We focus on attacks targeting the classification models,
regardless of what type of the model is. When querying the
target modelM with a data record, it will output the prediction
result where each value represents the probability that the
input record belongs to the corresponding class. We formalize
the target model as M : x → y, where x is the input data
and y is the corresponding predicted probability. Since the
adversary only has the black-box access to the target model,
M represents the prediction interface of the target model.

B. Adversary Priori Knowledge

In order to perform our MIA, we consider a weak (but more
practical) adversary with mere black-box access to the target
model. Such a case is referred to as the black-box setting,
where the adversary cannot obtain any priori knowledge about
the following information:
• Target model structure: including the type and the struc-

ture of the target model.
• Target model parameters: including the internal parame-

ters, hyper-parameters such as regularization parameters,
and the number of epochs used to train the target model.

• Target model training process: including the training
process of the target model, and the training loss therein.

• Auxiliary dataset or distribution of the training data:
including any dataset that shares the same distribution as
the training set used to create the target model, as well
as the distribution of the training data. In this sense, it is
almost infeasible to obtain a dataset that can be used to
train a substitute model to imitate the prediction behavior
of the target model.

• Membership information of the training data: Given a
dataset containing multiple target samples, we don’t have
any information about the membership property of each
individual sample. Specifically, what we could know is
that a part of the samples is in the training dataset.
However, the exact membership property of individual
samples within the given dataset still remains unknown
to the attacker.

C. Adversary Capability

In our black-box settings, the only capability of the
adversary is to obtain the prediction result by querying M

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 22,2023 at 05:25:52 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: GRADIENT-LEAKS: ENABLING BLACK-BOX MIAs AGAINST ML MODELS 431

with a record x:

M(x) = [y1, y2, · · · , yc, · · · , y|C |] (1)

where the prediction result is a probability vector and C is the
set of class labels that M can take. Each value yc (c ∈ C) in
this vector corresponds to the predicted probability that this
class c is the correct label.

D. Adversary Goal

Given the target model M and the target record xt , the
adversary goal is to infer whether xt is in M’s training set or
not:

A(xt ,M)→ In/Out (2)

where A represents the attacking functionality of Gradient-
Leaks. The label In (resp. Out) represents that the adversary
believes xt belongs to the target model’s training set (resp.
testing set).

IV. DESIGN OF GRADIENT-LEAKS

We formalize the task of Gradient-Leaks as follows: given
the black-box access to the target ML model M, Gradient-
Leaks first approximates the local gradient of a target record xt
onM, then extracts the membership features from the gradient
approximation, and finally determines whether xt was used to
train M or not leveraging the gradient approximation. To this
end, Gradient-Leaks mainly involves the following three steps.

Gradient Approximation: In order to approximate the local
gradients of M, we first sample a set of data records around xt
by perturbing the feature values of xt , and then query the target
model with these sampled data to obtain the corresponding
prediction results. With these results, a local linear regression
model around the target record xt can thus be constructed,
and the gradients of the local model with respect to xt can be
regarded as the gradient approximation of M (c.f. Fig. 1).

Membership Feature Extraction: We next modify an autoen-
coder to extract the membership features from xt ’s approxi-
mate gradient. Specifically, we replace the input and output of
the standard autoencoder with the approximate gradient and
several signals related to the membership property, respec-
tively (c.f. Fig. 2). Then the latent embedding of the trained
autoencoder serves as the membership features for xt .

Membership Inference: Given the membership features of a
group of records, an unsupervised clustering algorithm can be
then leveraged to construct an attack model which can cluster
these records in two clusters, ultimately separating members
from non-members.

A. Gradient Approximation

The key idea of the gradient approximation is to con-
struct a locally faithful model, whose parameter gradients
can be derived easily, to mimic the target model’s prediction
behavior around the target record. For the sake of simplicity,
we choose linear regression to construct our local model.
The local model’s prediction accuracy is closely related to
the local fidelity [30], which gives us an idea of how well

Fig. 1. A toy example of the gradient approximation, where the color
intensity of the local sample represents its contribution to the local model.
A linear model is constructed with the vicinal samples around the target record
to approximate the target model locally, and its gradient is regarded as the
gradient approximation of the target model.

the local model approximates the target model’s predictions
around the target record. If the local model can achieve a
resembling prediction performance compared with the target
model around the target record, it should be locally faithful
and can be used to estimate the gradient of the target record.

Formally, we construct a local linear regression model,
denoted as R, to approximate the prediction behavior of the
target model in the vicinity of the target record. We use
πx(x̃l) as a similarity measure between the target record xt
and another record x̃l , so as to define the locality around xt .
Then the local model R is obtained by the following loss
function:

arg min
R

L(M,R, πx) (3)

where we denote L(M,R, πx) as a measurement of how
faithful R is in approximating M around the target record.
The gradients of R can thus serve as the approximation results
of M’s gradients over xt .

1) Local Sample Generation: The first step of the gradient
approximation is to generate a set of data samples around xt
with corresponding sample weight πx. Since we do not have
any priori knowledge about the target model’s training data,
we perform the data generation by leveraging the perturbations
of xt . We select a set of features of xt that will be perturbed
uniformly at random, and denote the selected feature set as Fp.
Given a target record xt , we perturb a part of xt ’s feature
values according to the selected features in Fp. Specifically,
we successively replace the selected feature value of xt with
a different value which is randomly chosen from the value
range of the corresponding feature. Then we use this perturbed
record as the generated sample around xt , which is denoted
as x̃l . One thing should be noted that the number of perturbed
features Nfeature is not a constant number. It is randomly
chosen at the beginning of the generation of each sample,
so Nfeature can vary within the total number of the target
record’s features. Using our feature perturbation-based sample
generation method, we can generate one local sample at a time,
which can allow us to get any desired number of samples.

Naturally, the perturbed sample x̃l can be in the vicinity
of xt or far away from xt . In order to guarantee our local
model’s prediction accuracy in the neighborhood of the target
data, we force the sample which is far away from the target
record with a smaller contribution to the local model through
defining a sample weight for x̃l . As for calculating the weight

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 22,2023 at 05:25:52 UTC from IEEE Xplore. Restrictions apply.

432 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

of x̃l , we use an exponential function as follows:

πx(x̃l) = exp(−Dist (xt , x̃l)) (4)

where Dist represents a distance function such as cosine
distance, L2 distance, and Hamming distance. We repeat the
above steps to generate local samples around xt until the
samples are enough. For clarity, we denote all generated
samples as a dataset Dlocal , and the sample number of Dlocal
as Nlocal . The weights of the perturbed samples can help our
local model achieve a resembling prediction performance with
the target model in the neighborhood of the target data and
get a high local fidelity.

2) Local Model Construction: Now that we have got a
dataset Dlocal which is sampled around the target record xt
and weighted by πx. Next, Gradient-Leaks needs to build an
ML model that has a similar prediction behavior with the target
model locally around xt .

Specifically, we first leverage M’s prediction interface to
get each sampled record’s prediction results which represent
the probabilities that the records of x̃l belong to each class,
and we denote the results as yx̃l . Then for each class c ∈ C ,
we train a local linear model Rc around the target record xt
by minimizing the following loss function:

Lc(M,Rc, πx) =
1
2

∑
x̃l∈Dlocal

πx(Rc(x̃l)−M(x̃l)|c)
2

=
1
2

∑
x̃l∈Dlocal

πx(x̃l)(w
T
c x̃l + bc − yc

x̃l
)2 (5)

where Rc(x) = wT
c x+bc. M(x̃l)|c and yc

x̃l
both represent the

probability that x̃l belongs to class c predicted by M. Here we
use the mean squared error (MSE) loss as L for constructing
Rc. Thus Lc is the loss value of the local modelRc. At the end
of this step, we get a set of local linear models corresponding
to different classes: R = [R1,R2 · · ·R|C |]. Then we leverage
these local linear models to derive the approximate gradients
of M with respect to xt .

In Gradient-Leaks, the quantity of local samples utilized
for training the local model significantly influences the attack
performance (c.f. Fig. 6). Therefore, we need to determine
the number of local samples in advance. Since our generation
method allows us to produce local samples incrementally,
we can gradually increase the number of local samples and
train the local models until the prediction discrepancy between
the local model and the target model becomes smaller without
significant variations. Then we use the current number of the
entire local samples as the default value of our attack.

3) Local Gradient Approximation: Since the model Rc
is locally faithful with the target model M on prediction
behavior of class c, we leverage the gradients of all local
models in the set R as approximation results of M over xt .
Therefore, we successively calculate the parameter gradients
of every model in R as follows:

∂Lc

∂wc
= −(wT

c xt + bc − yc
x)xt

∂Lc

∂bc
= −(wT

c xt + bc − yc
x) (6)

Algorithm 1 Gradient Approximation
Require: Target model M; Weight function πx
Require: Target record xt ; Number of samples Nlocal
Require: Class set C ; Local loss function L

Dlocal ← {}, ∇W ← {}, ∇b← {}
for i ∈ {1, 2, 3, · · · , N } do ▷ Generate local samples

x̃l ← sample_around(xt)

Dlocal ← Dlocal ∪ ⟨x̃l , πx(x̃l)⟩

end for
for c ∈ C do

Rc ← fit(Dlocal ,M(Dlocal)|c) ▷ Fit the local model
Lc ←

∑
x̃l∈Dlocal

πx(Rc(x̃l)−M(x̃l)|c)
2

∇W ← ∇W ∪ ∂Lc
∂Wc
▷ Compute gradient with Equ. (6)

∇b← ∇b ∪ ∂Lc
∂bc

end for
return ∇W ,∇b

where wc and bc are the parameters of the local model R, ∂Lc
∂wc

and ∂Lc
∂bc

are the gradients of Rc over xt , and yc
x represents the

probability obtained from the target model that xt belongs to
class c.

Finally, the approximate gradients of the target model
∇W = [

∂L1
∂w1

, ∂L2
∂w2
· · ·

∂LC
∂wC
] and ∇b = [∂L1

∂b1
, ∂L2

∂b2
· · ·

∂LC
∂bC
]

are obtained, which are further exploited to infer whether
xt is in the target model’s training set or not. The gradient
approximation algorithm is outlined in Algorithm 1.

B. Membership Feature Extraction

Now that we have got the approximate gradients ∇W and
∇b of the target model M, we next exploit these gradient
information to infer the membership information about M’s
training set. The most straightforward method for membership
inference is to construct a binary attack model to determine
the membership property of a given record according to its
approximate gradients. However, the membership information
about a given record is usually hidden behind its approximate
gradients, so we need to extract the membership information.

To extract the membership features for each data record,
we leverage an autoencoder to achieve this purpose.
An autoencoder is a neural network that learns efficient data
representation in an unsupervised manner [31], [32]. Internally,
it has a hidden layer that describes a representation used to
represent the input. The typical structure of an autoencoder
consists of two main parts: an Encoder that reduces the input
dimensions and compresses the input data into an encoded
representation, and a Decoder that reconstructs the data from
the encoded representation to be as close to the original
input as possible. The autoencoder is trained to minimize the
reconstruction errors as follows:

L(x, x̂) = ∥x− x̂∥2 (7)

where x is the input data and x̂ is the reconstruction output.
The standard autoencoder, however, brings no extra benefit

for Gradient-Leaks to learn a data representation, since the
membership information of a given record is still hidden

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 22,2023 at 05:25:52 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: GRADIENT-LEAKS: ENABLING BLACK-BOX MIAs AGAINST ML MODELS 433

behind the learned representation. Fortunately, it is shown
that by adding extra regularization [33] or loss term [34] to
the reconstruction loss, the autoencoder is able to generate
output data which resembles the input data, rather than just
duplicating the input data. Moreover, the autoencoder can
even be forced to prioritize which aspects of the input should
be copied and learn a low-dimension representation which
contains a part of the properties of the input data [35], [36].
Thus in our design, we intentionally modify the input and
output of the standard autoencoder (c.f. Fig. 2), so as to learn
a low-dimension representation of the input data which can
reflect the membership property.

According to existing works [8], [12], we find some signals
that can be leveraged in our autoencoder. As discussed in [8],
attacking with only the prediction probability of the top 1 class
can achieve a resembling attack performance compared with
that using the whole probability vector. Therefore, the proba-
bility of the most likely class predicted by the target model can
reflect the membership property of the corresponding record.
In addition, disturbing the uncertainty of the prediction vector
can mitigate the risk of MIAs. That is because if the target
record was used to train the target model, the target model
would have high confidence to predict this record belongs to
a certain class and the prediction uncertainty will be close
to 0 in such a case. Thus the original uncertainty of the
prediction vector is another signal that can be exploited by
our autoencoder. For the prediction uncertainty, we use the
normalized entropy of the prediction probability vector for a
given record as follows:

H(R(x)) =
1

log(|C |)

|C |∑
c=1

ŷc
x log(ŷc

x) (8)

where ŷc
x represents the probability that the target record

belongs to class c predicted by the local model R.
Moreover, as discussed in [12], the gradients of the target

model’s loss over the training data are statistically smaller than
those over the testing data, as the objective of ML algorithms
is to minimize the training data’s loss with respect to the
ML model. Therefore, the norm of our approximate gradient
also contains the membership information. As for the gradient
norm, we make use of the L2 norm to measure the magnitude
of our approximate gradient (i.e., |∇W | and |∇b|).

In our modified autoencoder, we feed the Encoder with the
approximate gradients ∇W and ∇b, and the output of the
Decoder includes the prediction uncertainty of the local model
H(R(x)), the norm of the gradients ∥∇W∥ and ∥∇b∥, and the
probability of the prediction result on the correct label (the
label predicted by the target model) R(x)y=M(x) accordingly.
During the training process of the modified autoencoder, the
Encoder tries to extract the information that the approximate
gradients contain regarding these features.

After training the autoencoder, the Encoder can generate the
latent embedding z for the target record in a low-dimensional
space, which contains the membership information and thus
can help Gradient-Leaks easily distinguish the member from
non-member records. Then we leverage the Encoder output
z as the membership features to facilitate our membership
inference (c.f. Fig. 2).

Fig. 2. A schematic view of the membership feature extraction.

It should be noted that Nasr et al. [12] use an autoencoder
to directly predict a membership score for each data record,
representing the membership probability of the corresponding
input record. However, compressing the gradient information
of the record to a single value will bring relatively large
information loss and make it impossible to highlight the
membership information. To address this issue, we increase
the size of the autoencoder’s bottleneck from 1 to a larger
value to expand the representation capacity of the encoder’s
output. Then we treat the output of the encoder part as the
embedding of membership information of the target samples
to perform our MIA.

C. Membership Inference

The goal of Gradient-Leaks is decisional membership infer-
ence, thus we construct an attack model that is a binary
classifier with two output classes, In and Out. Since we have
no access to the target model’s training data, we cannot obtain
the ground truth of the given target record whether it is used
to train the target model or not. Therefore, the commonly
adopted supervised MIA methods are no longer applicable
in our settings, and we choose to utilize the unsupervised
approach to perform our membership inference.

Given a dataset D′ consisting of multiple target records we
suspect in M’s training set, Gradient-Leaks attempts to infer
the membership property of all target records simultaneously,
in an unsupervised manner. Now that we have obtained the
membership features of the records in D′, we can simply
leverage an unsupervised clustering algorithm to construct
the attack model. It is natural to cluster the records of D′

into two clusters and then determine the cluster with a lower
mean gradient norm as the members of the target model’s
training set. However, through our experiments, we find that
Gradient-Leaks may perform better when the cluster number
is larger. Therefore, we involve a multilevel clustering method
to infer the membership property of the target records. We first
cluster the target samples into a larger number of clusters, and
then group the cluster centroids into two clusters. With our
multilevel clustering method, we could handle the data sam-
ples whose membership features do not fall exactly into both
membership and non-membership clusters. It is worth noting

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 22,2023 at 05:25:52 UTC from IEEE Xplore. Restrictions apply.

434 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

that any classic clustering algorithm (including K-Means [37],
DBSCAN [38], and spectral clustering [39]) can be employed.

During the training process, the attack model attempts to
find similarities in membership features of the records in D′

and group similar training records together. In the end, the
attack model separates the records into two clusters, where
the cluster with a smaller mean norm of gradients is labeled
as the class In, and the other as Out.

V. PERFORMANCE EVALUATION

A. Experiment Setup

1) Datasets: We utilize four different datasets to evalu-
ate the performance of Gradient-Leaks. Among them, three
datasets including UCI Adult,7 Purchase,8 and MNIST9 are
the same as those used in the previous MIAs [8], [12], [14]. We
also make use of Bank Marketing dataset,10 which is obtained
from the financial field.

a) UCI adult (census income): This dataset includes
48, 842 records with 14 attributes such as age, gender, edu-
cation, marital status, occupation, working hours, and native
country. The classification task of this dataset is to predict if a
person earns over $50K a year based on the census attributes.

b) Purchase: Purchase dataset contains shopping histo-
ries of several thousand shoppers over one year, including
many fields such as product name, store chain, quantity,
and date of purchase. In particular, Purchase dataset (with
197, 324 records) does not contain any class labels. Following
Shokri et al. [8] and Salem et al. [14], we adopt K -Means
algorithm to assign each data record with a class label. The
numbers of classes include 2, 10, 20, 50, and 100, and each
class corresponds to a purchase style.11

c) MNIST : This is a dataset of 70,000 handwritten digits
formatted as 32×32 images and normalized so that the digits
are located at the central of the image. It includes sample
images of handwritten digits from 0 to 9. Each pixel within
the image is represented by 0 or 1.

d) Bank marketing : This dataset includes 45, 211 client
information of a Portuguese banking institution, and the goal
is to predict if the client will subscribe to a term deposit
(binary classification). This dataset contains 17 attributes such
as marital, education, personal loan, and type of job.

For each dataset, 10,000 records are randomly selected to
train different types of target models.

2) Target Models: We evaluate Gradient-Leaks on five
different types of target models: three implemented locally and
two constructed by the cloud-based MLaaS platforms. In our
experiments, we treat all the target models as black boxes.

a) Native target models : We locally construct three
types of ML models as the target models, including logistic
regression (LR), random forest (RF), and deep neural network
(DNN). We use the standard training process provided by the

7https://archive.ics.uci.edu/ml/datasets/Adult
8https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
9http://yann.lecun.com/exdb/mnist/
10https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
11Unless otherwise specified, the dataset Purchase in the subsequent

sections of this paper specifically refers to the dataset with 100 classes.

ML software libraries scikit-learn [40] (for LR and RF) and
PyTorch [41] (for DNN) to build these target models. After
the training process, we only provide the prediction interface
of the target models to Gradient-Leaks to perform the attacks.

b) Cloud-based target models: In our experiments, the
cloud-based target models are trained by two MLaaS plat-
forms. The first platform is Amazon ML, where the user can-
not choose the model types but can modify a few parameters,
including the maximum number of passes over the training
data and L2 regularization amount. The former determines
the number of training epochs and the latter tunes how much
regularization is performed on the model parameters in order
to avoid overfitting. We use Amazon ML platform to train the
target models with the same parameter setting, in which the
number of epochs is 200, and the L2 norm is 10−6.

The second cloud-based MLaaS platform is BigML. Dif-
ferent from Amazon ML platform, the user of BigML is
allowed to select the model’s type and manipulate the model’s
parameters. However, we do not participate in the training
process of the target models on BigML platform. In our
experiments, the type of the target models is chosen by BigML
adaptively depending on the data, and all the parameters of the
target models are set to the default values.

3) Evaluation Metrics: We evaluate the performance of
Gradient-Leaks using precision and recall metrics of MIAs.
Specifically, precision presents the proportion of the data
records predicted as members of the training dataset that are
indeed in the target model’s training set. Recall presents the
fraction of the training records that we can correctly infer
as the training set’s records. In other words, precision (resp.
recall) measures the accuracy (resp. coverage) of MIAs.

Furthermore, in order to evaluate how close the prediction
behavior of our local model is with the target model around the
given record (i.e., local fidelity), we adopt the following two
metrics. One is the local accuracy of the local linear model,
which is defined as the ratio of the size of the local samples
predicted to the same class by both the local model and target
model to the size of all local samples. The other metric is
L1 Norm of the prediction probability difference between the
local linear model and the target model on the same target
record, which can be obtained by:

Pdiff = ∥yx − ŷx∥1 (9)

where yx (resp. ŷx) is the prediction result of the same target
record obtained from the target (resp. local) model.

4) Comparison Methods: We consider the following state-
of-the-art MIAs as our comparison methods:

a) Shadow attack [8]: It builds multiple shadow models
with the same structure as the target model to mimic the target
model’s prediction behavior, and leverages the shadow model’s
outputs to train an attack model that can separate the member
and non-member of the target model’s training set. In our
experiments, we set the number of shadow models used by
Shadow Attack to 10.

b) ML-Leaks [14]: It constructs a set of sub-shadow
models with different algorithms, and combines them together
as one shadow model to generate the training data for
obtaining the inference attack model. In keeping with

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 22,2023 at 05:25:52 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: GRADIENT-LEAKS: ENABLING BLACK-BOX MIAs AGAINST ML MODELS 435

the experiment settings of ML-Leaks, we construct three
sub-shadow models using RF, LR, and NN algorithms and
stack them together as one shadow model.

c) Output attack [12]: It builds an unsupervised attack
model by using the target model’s outputs, and predicts the
cluster with a lower uncertainty as the member of the training
set.

d) M-Entropy attack [20]: It calculates the entropy by
considering both the prediction probability of the correct label
and the entropy of the prediction probabilities for other incor-
rect labels. Based on the modified entropy, the target record
is classified as a member if it falls below the predetermined
threshold, and as a non-member otherwise. The thresholds are
set for each class individually, which are learned using the
shadow training technique [8].

We perform all the above attacks as well as Gradient-
Leaks on randomly reshuffled records from the target model’s
training and testing datasets, where the number of members is
set equal to the number of non-members, in order to maximize
the uncertainty of inference (thus the baseline accuracy is
0.5, equivalent to random guess). When it comes to Gradient-
Leaks, we set the default number of local samples to 5,000.
The architecture of the modified autoencoder in our attack
comprises a 4-layer encoder and a 2-layer decoder. The hidden
layer size, which represents the dimension of membership
features, is set to 5. To optimize the model, we employ SGD
with a training epoch of 1,000 and a learning rate of 10−3.

B. Impact of Number of Suspicious Dataset

In order to evaluate the impacts of the record number of
suspicious dataset D′, we measure the attacking performance
of Gradient-Leaks against three types of native target models,
where the number of local samples is set to 5,000. From
Fig. 3(a) we can see that for the target models trained on Bank
dataset, Gradient-Leaks can achieve a mean attack precision
of 0.595 with |D′| = 50. When D′ contains only two target
records, Gradient-Leaks can only achieve a mean precision of
0.505. As the number of D′ increases to 500 (resp. 1,000), the
attack precision gradually decreases by 6.8% (resp. 7.7%).

Regarding the target models trained on MNIST dataset,
Gradient-Leaks can achieve a mean attack precision of
0.583 when |D′| = 100. As the number of D′ increases
to 200, Gradient-Leaks can still achieve a mean precision
of 0.576 as shown in Fig. 3(b). However, when D′ only
contains two target records, Gradient-Leaks achieves a mean
precision of 0.513 which is just slightly higher than that
of random guess. When D′ consists of 500 (resp. 1,000)
records, the performance of Gradient-Leaks decreases by 3.6%
(resp. 5.6%).

Similar results can also be observed when using Adult
and Purchase datasets. The results demonstrate that the num-
ber of D′ would largely affect the attack performance of
Gradient-Leaks. Neither too small nor too large number of
D′ allows Gradient-Leaks to achieve a satisfactory inference
performance, and this phenomenon is especially obvious when
attacking against the DNN model. Referring to the above
results, we thus empirically set the record number of D′ to
100 in the following experiments, no matter which dataset the

Fig. 3. The impact of the record number in D′.

target model is trained on and which type of algorithm the
target model employs.

C. Performance of Gradient-Leaks

We first evaluate the performance of Gradient-Leaks, and
the experiment results are shown in Table II. It should be noted
that we fine-tune the parameters of the comparison methods to
ensure that our reproduced results closely match those reported
in their original paper. Note that we do not report similar
results using Purchase dataset in this section due to space
limits, but present some results in Section V-H to show the
impact of the number of classes.

For the three native target models, we can observe
that Gradient-Leaks performs better than Shadow Attack,
ML-Leaks, Output Attack, and M-Entropy Attack, achieving
the improvements of the attack precision by 10.7%, 11.3%,
7.9%, and 5.7%, respectively. To be more specific, when
attacking the LR models, our attack achieves a mean attack
precision of 0.608, while the attack performances of the
comparisons are just around the random guess, which is higher
than that of the comparisons by 13.5%. The mean recall of our
attack is 0.615. When it comes to the RF models, Gradient-
Leaks does not always get the best attack performance. For
the RF model trained on MNIST dataset, M-Entropy Attack
achieves the best attack precision of 0.647, which is higher
than ours by 10.9%. When facing the RF models trained
on other datasets, our attack gets precision improvements
compared with the other three comparisons by 4.3%, 5.6%,
and 12.8% respectively. As for the recall metric, M-Entropy
Attack gets the best result of 0.808, which is higher than
ours by 16.7%. When attacking against the DNN models,
Gradient-Leaks gets the best attack performance. For the DNN
models of binary classification tasks, although all the existing
attacks perform similarly to random guess whose precisions
are slightly higher than 0.5, we can obtain the attack precisions
of 0.548 and 0.576 for Adult and Bank datasets, respectively.

As for the target models trained by MLaaS platforms, our
attack still performs better than the comparison methods,
except for the target models trained on MNIST dataset.
When attacking the binary classification models, Gradient-
Leaks performs much better than the comparison methods.
Especially, for the model trained by BigML on Adult dataset,
our attack can distinguish the members from non-members
with a precision of 0.561 and a recall of 0.718. In this case,
the attack precision of our model is higher than the comparison
methods by 10.2%, 10.1%, 6.1%, and 3.2%, respectively.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 22,2023 at 05:25:52 UTC from IEEE Xplore. Restrictions apply.

436 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE II
ATTACK PERFORMANCE COMPARISONS

Fig. 4. Prediction accuracy comparison between our local model and the shadow model.

However, Gradient-Leaks is not always better than Output
Attack and M-Entropy Attack, especially for the multi-class
models trained on MNIST dataset, where the attack precision
of our attack is lower than that of these two MIAs. For the
target models trained by Amazon ML, our attack precision
and recall are lower than that of Output Attack by 13.8%
and 1.9%. Even so, Gradient-Leaks still performs better than
Shadow Attack and ML-Leaks, reaching the improvements on
the attack precision of 11.3% and 7.8%, respectively. As for
the recall metric in this case, our attack exhibits a significantly
lower recall compared to the M-Entropy Attack. It also shows
a slightly lower recall than ML-Leaks and Output Attack, with
a difference of approximately 2.5%. However, our attack’s
recall remains higher than Shadow Attack by 5.8%.

From the results, we can see that Gradient-Leaks outper-
forms in general the 4 comparisons against most target models.
One possible reason is that our local model is better than
the shadow model based methods at approximating the target
model’s prediction behavior around the target record (the
results shown in Fig. 4 can also demonstrate this point of
view). Therefore, MIAs with our local model can achieve a
more precise performance. Moreover, Gradient-Leaks lever-
ages the approximate gradient of the target record to perform
MIAs. Compared with the prediction probability used by
existing MIAs, the gradient can reflect the target model’s
prediction behavior to the target record from a more fine-
grained perspective.

TABLE III
PREDICTION DIFFERENCE ON TARGET DATA RECORD

D. Evaluation of Local Fidelity of Local Models

In this section, we evaluate the local fidelity of our local
models on 12 different target ML models. We use the
prediction difference between our model and the target model
to measure the local fidelity of our local models. By comparing
the prediction difference between our local models and the
shadow models with the target model respectively, we could

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 22,2023 at 05:25:52 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: GRADIENT-LEAKS: ENABLING BLACK-BOX MIAs AGAINST ML MODELS 437

Fig. 5. The impact of the algorithm of the attack models on inference attacks.

evaluate which model could better mimic the prediction behav-
ior of the target model around the target sample. For each
target model, we randomly select 100 samples from its training
set as the target records. Then we derive the mean prediction
difference and the mean local accuracy of the target records
with respect to the shadow model and our local model. The
prediction difference of the target records between the shadow
model and our local model is shown in Table III.

For the LR and RF models trained on Adult dataset, the
prediction difference of the local model is around half that
of the shadow model. However, for the DNN model, the
prediction difference of our local model can be 10−1

× smaller
than that of the shadow model. Regarding the Bank dataset, the
prediction difference of our local model is approximately half
that of the shadow model with respect to the LR model, similar
to the findings on the Adult dataset. However, for RF and DNN
models, our local model demonstrates a better performance,
exhibiting an improvement of up to 10× compared to the
shadow models. As for the MNIST dataset, the ratio of
the prediction difference between the local model and the
target model can reach 10−2

×, when Gradient-Leaks attacks
the target models trained by LR and RF algorithms. When
attacking against the DNN model, the ratio can be further
reduced to 10−3

×. When considering the Purchase dataset,
our method displays a significant difference in prediction
difference compared to the shadow model across all target
models, spanning multiple orders of magnitude. Notably, in the
case of the RF model, the prediction difference achieved by
our local model can be as much as 10−4

× smaller than that
of the shadow model.

From the experiment results we can find that when treating
with DNN models, our local model always approximates the
target model much better than the shadow model. The main
reason is that the training process of DNN models involves
randomness, e.g., on the initial parameters and the gradient
orientation. Even we train the two DNN models with the
same structure, training set, and the hyper-parameters, these

two models would not be exactly the same as each other.
Furthermore, since the training set of the shadow model is
different from that of the target model, it will make the
difference between the shadow model and the target model
even larger. Consequently, the prediction of the shadow model
will be far away from the target model.

Fig. 4 shows the local accuracy of the shadow model and
the local model on the same set of data records. Over all
target models, our local models achieve a mean local accuracy
of 91.3%, which is higher than that of the shadow models
by 10.1%. Especially, for DNN target models, our models
perform better than the shadow models by 11.5%, 10.1%,
6.2% and 23.5% on the Adult, Bank, MNIST and Purchase
datasets, respectively. From the results, we can find that our
local models are more precise than the shadow model all time.
This is because that the shadow model attempts to imitate the
target model from a global perspective, while our local model
aims to locally approximate the target model around a given
record. It is easy to learn the prediction behavior of a model
within a limited range of the data space.

E. Impact of Attack Model’s Algorithm

To evaluate the impact of the algorithm of attack models,
we test the attack performance with three attack models trained
by different unsupervised clustering algorithms, including
Spectral Cluster, K-Means, and DBSCAN. Based on the exper-
iment results illustrated in Fig. 5, it is evident that the attack
model developed using the Spectral Cluster approach exhibits
the highest level of effectiveness against all target models. It
achieves a mean precision of 0.683 and a mean recall of 0.781.
On the other hand, the attack model trained with DBSCAN
performs the worst, with its precision and recall being 10.2%
and 24.7% lower than the Spectral Cluster model, respectively.
The overall precision of the DBSCAN model barely exceeds
random guessing, measuring only 0.536. Regarding the attack
model trained using the K-Means algorithm, it demonstrates
a mean attack precision of 0.587 and a mean recall of 0.659.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 22,2023 at 05:25:52 UTC from IEEE Xplore. Restrictions apply.

438 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 6. The impact of the number of local samples.

When attacking DNN target models, the precision metric
displays the most significant performance variability among
different unsupervised clustering algorithms used to construct
the attack models as shown in Fig. 5(a). For instance, in the
case of inferring against the DNN model trained on Bank
dataset, the attack precision of Spectral Cluster model is higher
than that of K-Means model and DBSCAN model by 6.9%
and 14.7%, respectively. However, all attack models behave
relatively similarly when attacking against LR target models.
For instance, the attack precision of Spectral Cluster model is
higher than that of K-Means model and DBSCAN model by
3.9% and 6.6%, respectively, when attacking the LR model
trained on Bank dataset.

The experiments show that the membership features
extracted from the approximate gradient contain the informa-
tion about the membership property of the given data, which
can be used to determine whether the given data is in the
target model’s training data or not. Therefore, no matter which
ML algorithm the target model employs, Gradient-Leaks can
breach the membership privacy of the target model with a
suitable attack model.

F. Impact of Number of Local Samples

To quantify the impact that the number of local samples has
on the performance of Gradient-Leaks, we perform 5 trials of
the inference attacks on five different types of ML models with
1,000∼10,000 samples. In order to make it easier to observe
the trend of the attack performance with the varying number of
local samples, we average and then smooth the experimental
results.

Fig. 6 shows the relationship between the number of local
samples and the attack performance of Gradient-Leaks. In gen-
eral, as the number of local samples increases, the precision
of our inference attack becomes more accurate, which is not
the case for the recall metric. For all the target models trained
on Adult dataset, the mean attack precision is 0.529 and the
mean recall is 0.739 when the number of local samples is
1,000. When we set the number of local samples to 10,000,
the mean attack precision increases by 11.9% while the mean

recall decreases by 10.7%. As shown in Fig. 6(a) and 6(b),
when the number of local samples exceeds 5,000, the increas-
ing samples cannot lead to a significant improvement of
the attack precision, even when the attack recall continues
decreasing. Regarding the Bank dataset, the performance of
the attack with varying numbers of local samples is illustrated
in Figs. 6(c) and 6(d). Analyzing the results, we can see that as
the number of local samples increases from 1,000 to 10,000,
the attack precision of Gradient-Leaks improves from 0.550 to
0.686, while the attack recall decreases from 0.763 to 0.634.
However, after surpassing 7,000 local samples, the increasing
trend in attack precision gradually diminishes, while the recall
continues to decline fast.

The main reason is that the Adult and Bank datasets are
quite simple and thus the prediction behavior of the model
trained on these dataset is nontrivial for our local model to
approximate. A small amount of samples will be sufficient for
the local models to mimic the target model well. Nevertheless,
with a large amount of samples, the local model will be
overfitted around the given record and lose its generalization.
In this case, the approximate gradient of the given record is
in the way to performance degradation of Gradient-Leaks.

As shown in Figs. 6(e) and 6(f), when attacking the target
models trained on MNIST dataset, Gradient-Leaks can achieve
a mean attack precision and recall of 0.534 and 0.778,
respectively, with only 1,000 local samples. As the number
of local samples increases, the mean precision increases by
29.8%, while the mean recall decreases by 12.1%. As depicted
in Figs. 6(g) and 6(h), when our MIA is applied to target
models trained on the Purchase dataset, remarkable results are
observed. Even with only 1,000 local samples, our MIA can
achieve a mean attack precision of 0.778 and a mean recall of
0.803. Nevertheless, as the number of local samples increases
to 10,000, the mean precision exhibits an improvement of
5.73%, while the mean recall exhibits a decrease of 6.24%.

The MNIST and Purchase datasets present a higher level
of classification complexity compared to the Adult and Bank
datasets. The behavior exhibited by the target models trained
on these datasets is more intricate, making it challenging for

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 22,2023 at 05:25:52 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: GRADIENT-LEAKS: ENABLING BLACK-BOX MIAs AGAINST ML MODELS 439

Fig. 7. The impact of overfitting.

our local model to accurately mimic their behavior. Conse-
quently, to obtain a more precise local model, a large number
of local samples is required to interact with the target model
and gather additional insights into its prediction behavior. As
our local model better approximates the target model, the
gradient approximation becomes increasingly similar to that of
the target model. This leads to an enhancement in the attack
precision of our Gradient-Leaks. The results obtained from the
Adult and Bank datasets lend support to our perspective.

G. Impact of Overfitting

In this section, we evaluate the impact of overfitting of target
models on the performance of Gradient-Leaks. To achieve this,
we perform our inference attack against a series of target
models trained with different parameters, while the model’s
training data and training algorithm are kept unchanged. In
order to quantify the overfitting level of the target model,
we use the difference between its prediction accuracy on
the training set and testing set as an indicator. The results
in Figs. 7(a) and 7(b) demonstrate the relationship between
the attack performance of Gradient-Leaks and the overfitting
level of the target models constructed by RF algorithm on the
MNIST dataset. It is obvious that with the overfitting level
increasing, the target models are more vulnerable to MIAs.
For instance, when the target model has an overfitting level
of 4.38%, our attack achieves a relatively low precision and
recall of 0.537 and 0.301, respectively. However, Gradient-
Leaks achieves the precision and recall both around 0.9 when
the overfitting level exceeds 45%.

In addition, we carry out further experiments to explore the
relationship between the overfitting level of the target model
and the norm of our approximate gradient. We train two sets of
DNN target models on Purchase and MNIST respectively, and
then get different overfitting levels by adjusting the number of
each model’s training epoch. We further leverage Gradient-
Leaks to derive the approximate gradients for one set of
training records (i.e. member records) and another set of
testing records (i.e. non-member records), respectively. Then

Fig. 8. The impacts of the number of classes (Purchase).

we average the approximate gradients respectively. As shown
in Figs. 7(c) and 7(d), the approximate gradient norms of both
member and non-member records decrease with an increasing
overfitting level, but the norm of the members declines faster
than that of the non-members. When the overfitting level
exceeds a certain degree, the gradient norm of non-members
will be gradually stable, which is not the case for member
instances. Therefore, the difference of the approximate gradi-
ent norm between members and non-members will increase
as the model overfitted more severely. Besides, it is obvious
that member records have smaller gradient norm values than
non-member records do.

Our experiments illustrate that overfitting can increase the
risk of membership privacy to an ML model’s training data.
With the overfitting level of a model increasing, the dif-
ference of our approximate gradient between member and
non-member records becomes widened. As such, Gradient-
Leaks can separate the member records from non-members
and achieves a relatively high attack performance against an
overfitted model.

H. Impact of Number of Classes

The number of output classes of the target model contributes
to how much the ML model leaks. With more output classes,
Gradient-Leaks can obtain more information about the predic-
tion behavior of the target model and thus can derive more
detailed local approximate gradient.

To evaluate the impact of the number of output classes,
we train a series of target models using LR, RF, and DNN on
the Purchase dataset with 2, 10, 20, 50, 100 classes. Fig. 8
shows the attack precision against different target models.
For each type of ML models, the performance of Gradient-
Leaks has a significant improvement as the number of output
classes increases. Specifically, the attack precision of our
attack is 0.582 when the LR model has 2 output classes, while
increasing to 0.784 when the class number is 100. As for
the target models trained by RF algorithm, the performance
of our attack has the most significant improvement and the
attack precision increases by 0.263. For DNN target models,
our attack precision increases from 0.638 to 0.823.

From the results we can observe that, models with fewer
output classes leak fewer information about their membership
property in the training data. As the number of classes
increases, the target models need to learn more distinctive
features from the training data to achieve a higher classification
accuracy and to remember more about their training data. As
a consequence, ML models with more outputs may leak more
information and suffer from more severe MIAs.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 22,2023 at 05:25:52 UTC from IEEE Xplore. Restrictions apply.

440 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

VI. CONCLUSION

In this paper, we have presented Gradient-Leaks, the first
membership inference attack (MIA) against ML models with
mere black-box access. Gradient-Leaks leverages a linear ML
model trained around the target record to derive the approx-
imate gradient with respect to the target model and further
extracts the vital membership features to facilitate the mem-
bership inference. Extensive experiments on different types of
ML models with real-world datasets show that Gradient-Leaks
can achieve better performance compared to the state-of-the-
art MIAs, even without any prior knowledge about the target
model and its training data. We believe our work may deepen
the understanding of the training data privacy risks of ML
models in practical settings and shed light on exploiting more
effective countermeasures against MIAs.

REFERENCES

[1] F. Li et al., “Mask DINO: Towards a unified transformer-based frame-
work for object detection and segmentation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023, pp. 3041–3050.

[2] W. X. Zhao et al., “A survey of large language models,” 2023,
arXiv:2303.18223.

[3] Y. Yang, C. Huang, L. Xia, and C. Li, “Knowledge graph contrastive
learning for recommendation,” in Proc. 45th Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr., Jul. 2022, pp. 1434–1443.

[4] N. Aafaq, N. Akhtar, W. Liu, M. Shah, and A. Mian, “Language model
agnostic gray-box adversarial attack on image captioning,” IEEE Trans.
Inf. Forensics Security, vol. 18, pp. 626–638, 2023.

[5] Y. Shen, X. He, Y. Han, and Y. Zhang, “Model stealing attacks against
inductive graph neural networks,” in Proc. IEEE Symp. Secur. Privacy
(SP), May 2022, pp. 1175–1192.

[6] T. Zhu, D. Ye, S. Zhou, B. Liu, and W. Zhou, “Label-only model
inversion attacks: Attack with the least information,” IEEE Trans. Inf.
Forensics Security, vol. 18, pp. 991–1005, 2023.

[7] L. T. Phong and T. T. Phuong, “Privacy-preserving deep learning via
weight transmission,” IEEE Trans. Inf. Forensics Security, vol. 14,
no. 11, pp. 3003–3015, Nov. 2019.

[8] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Proc. IEEE Symp.
Secur. Privacy (SP), May 2017, pp. 3–18.

[9] H. Hu, Z. Salcic, L. Sun, G. Dobbie, P. S. Yu, and X. Zhang,
“Membership inference attacks on machine learning: A survey,” ACM
Comput. Surv. (CSUR), vol. 54, no. 11s, pp. 1–37, 2022.

[10] A. Sablayrolles, M. Douze, C. Schmid, Y. Ollivier, and H. Jegou,
“White-box vs black-box: Bayes optimal strategies for membership
inference,” in Proc. ICML, 2019, pp. 5558–5567.

[11] B. Wu et al., “Characterizing membership privacy in stochastic gradient
Langevin dynamics,” 2019, arXiv:1910.02249.

[12] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,” in Proc. IEEE Symp. Secur.
Privacy (SP), May 2019, pp. 739–753.

[13] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in
machine learning: Analyzing the connection to overfitting,” in Proc.
IEEE 31st Comput. Secur. Found. Symp. (CSF), Jul. 2018, pp. 268–282.

[14] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes,
“ML-leaks: Model and data independent membership inference attacks
and defenses on machine learning models,” in Proc. Netw. Distrib. Syst.
Secur. Symp., 2019, pp. 1–15.

[15] J. Li, N. Li, and B. Ribeiro, “Membership inference attacks and defenses
in classification models,” 2020, arXiv:2002.12062.

[16] G. Liu, C. Wang, K. Peng, H. Huang, Y. Li, and W. Cheng,
“SocInf: Membership inference attacks on social media health data with
machine learning,” IEEE Trans. Computat. Social Syst., vol. 6, no. 5,
pp. 907–921, Oct. 2019.

[17] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust
you’: Explaining the predictions of any classifier,” in Proc. 22nd
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2016,
pp. 1135–1144.

[18] J. Lee et al., “Wide neural networks of any depth evolve as
linear models under gradient descent,” in Proc. NeurIPS, 2019,
pp. 8570–8581.

[19] R. Shokri, M. Strobel, and Y. Zick, “Exploiting transparency
measures for membership inference: A cautionary tale,” in Proc.
AAAI Workshop Privacy-Preserving Artif. Intell., vol. 13, 2020,
pp. 1–11.

[20] L. Song and P. Mittal, “Systematic evaluation of privacy risks
of machine learning models,” in Proc. USENIX Secur., 2021,
pp. 2615–2632.

[21] Y. Liu, Z. Zhao, M. Backes, and Y. Zhang, “Membership inference
attacks by exploiting loss trajectory,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Nov. 2022, pp. 2085–2098.

[22] C. A. Choquette-Choo, F. Tramer, N. Carlini, and N. Papernot,
“Label-only membership inference attacks,” in Proc. ICML, 2021,
pp. 1964–1974.

[23] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro, “LOGAN:
Membership inference attacks against generative models,” in Proc.
Privacy Enhancing Technol., 2019, pp. 133–152.

[24] K. S. Liu, C. Xiao, B. Li, and J. Gao, “Performing co-membership
attacks against deep generative models,” in Proc. IEEE Int. Conf. Data
Mining (ICDM), Nov. 2019, pp. 459–467.

[25] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in Proc. IEEE
Symp. Secur. Privacy (SP), May 2019, pp. 691–706.

[26] S. Truex, L. Liu, M. E. Gursoy, W. Wei, and L. Yu, “Effects of differen-
tial privacy and data skewness on membership inference vulnerability,”
in Proc. 1st IEEE Int. Conf. Trust, Privacy Secur. Intell. Syst. Appl.
(TPS-ISA), Dec. 2019, pp. 82–91.

[27] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramèr,
“Membership inference attacks from first principles,” in Proc. IEEE
Symp. Secur. Privacy (SP), May 2022, pp. 1897–1914.

[28] H. Yan et al., “Membership inference attacks against deep learning
models via logits distribution,” IEEE Trans. Depend. Secure Comput.,
vol. 20, no. 5, pp. 3799–3808, Sep. 2023, doi: 10.1109/TDSC.2022.
3222880.

[29] Z. Li and Y. Zhang, “Membership leakage in label-only exposures,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2021,
pp. 880–895.

[30] C. Molnar. (2019). Interpretable Machine Learning: A Guide for Making
Black Box Models Explainable. [Online]. Available: https://christophm.
github.io/interpretable-ml-book/

[31] M. A. Kramer, “Nonlinear principal component analysis using autoas-
sociative neural networks,” AIChE J., vol. 37, no. 2, pp. 233–243,
Feb. 1991.

[32] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, pp. 3371–3408, Jan. 2010.

[33] R. Boney et al., “Regularizing trajectory optimization with denoising
autoencoders,” in Proc. NeurIPS, 2019, pp. 2855–2865.

[34] A. Razavi, A. van den Oord, and O. Vinyals, “Generating diverse
high-fidelity images with VQ-VAE-2,” in Proc. NeurIPS, 2019,
pp. 14837–14847.

[35] H.-S. Lee, Y.-D. Lu, C.-C. Hsu, Y. Tsao, H.-M. Wang, and S.-K. Jeng,
“Discriminative autoencoders for speaker verification,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2017,
pp. 5375–5379.

[36] J.-C. Chou, C.-C. Yeh, H.-Y. Lee, and L.-S. Lee, “Multi-target
voice conversion without parallel data by adversarially learning dis-
entangled audio representations,” in Proc. Interspeech, Sep. 2018,
pp. 501–505.

[37] K. Krishna and M. N. Murty, “Genetic k-means algorithm,” IEEE Trans.
Syst. Man, Cybern., B, Cybern., vol. 29, no. 3, pp. 433–439, Jun. 1999.

[38] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Proc.
ACM SIGKDD, 1996, pp. 226–231.

[39] U. von Luxburg, “A tutorial on spectral clustering,” Statist. Comput.,
vol. 17, no. 4, pp. 395–416, Dec. 2007.

[40] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2012.

[41] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. NeurIPS, 2019, pp. 8024–8035.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on November 22,2023 at 05:25:52 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2022.3222880
http://dx.doi.org/10.1109/TDSC.2022.3222880

