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Abstract— Deep learning (DL) has achieved tremendous suc-
cess in recent years in many fields. The success of DL typically
relies on a considerable amount of training data and the expensive
model optimization process. Therefore, a trained DL model and
its corresponding training data have become valuable assets
whose intellectual property (IP) needs to be protected. Once a
DL model or its training dataset is released, there is currently
no mechanism for the entity that owns one part to establish
a clear relationship with the other. In this paper, we aim to
reveal the integrated relationship between a given DL model and
the corresponding training dataset, by framing the problem of
knowledge representation of a dataset with respect to DL models
trained on it: how to effectively represent the knowledge transferred
from a training dataset to a DL model? Our basic idea is that the
knowledge transferred from a training dataset to a DL model
can be uniquely represented by the model’s decision boundary.
Therefore, we design a novel generation method that utilizes
geometric consistency to find the samples supporting the decision
boundary, which can serve as the proxy for the knowledge
representation. We evaluate our method in three different cases:
IP audit of training data, IP audit of DL models, and adversarial
knowledge distillation. The experimental results show that our
method can improve the performance of existing works in all
cases, which confirm that our method can effectively represent
the knowledge transferred from a training dataset to a DL model.

Index Terms— Knowledge representation, intellectual property,
adversarial example, boundary supporting sample.

I. INTRODUCTION

IN RECENT years, deep learning (DL) has achieved success
in many fields, ranging from computer vision [1], [2] to

natural language processing [3], [4]. Constructing a DL model

Manuscript received 23 March 2023; revised 16 June 2023; accepted 4 July
2023. Date of publication 7 July 2023; date of current version 17 July 2023.
This work was supported in part by the National Natural Science Foundation
of China under Grant 62272183, Grant 62171189, Grant 62002104, and Grant
62071192; in part by the Key Research and Development Program of Hubei
Province under Grant 2021BAA026; and in part by the Special Fund for
Wuhan Yellow Crane Talents (Excellent Young Scholar). The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Edgar Weippl. (Corresponding author: Gaoyang Liu.)

Zehao Tian, Zixiong Wang, and Chen Wang are with the Hubei Key
Laboratory of Smart Internet Technology, School of Electronic Information
and Communications, Huazhong University of Science and Technology,
Wuhan 430074, China (e-mail: zhtian@hust.edu.cn; zixwang@hust.edu.cn;
chenwang@hust.edu.cn).

Ahmed M. Abdelmoniem is with the School of Electronic Engineering and
Computer Science, Queen Mary University of London, E1 4NS London, U.K.
(e-mail: ahmed.sayed@qmul.ac.uk).

Gaoyang Liu is with the School of Computing Science, Simon Fraser
University, Burnaby, BC V5A 1S6, Canada (e-mail: gaoyangliu2020@
gmail.com).

Digital Object Identifier 10.1109/TIFS.2023.3293418

typically involves two main aspects contributing to costs and
efforts: data processing (including data collection, data anno-
tation, and data transformation) and model training (including
model structure selection, training hyper-parameter selection,
and model iterative optimization). Therefore, the trained DL
model and the corresponding training dataset become a crucial
form of intellectual property (IP) of the owners that require
protection, and many efforts have been made recently to verify
the ownership of the data [5], [6] and the model [7], [8], [9].

However, existing IP verification studies [5], [7], [8], [9]
normally isolate DL models and training datasets, and verify
the IP of models or datasets separately, while ignoring the
interaction between a DL model and its training data during
the training process. Specifically, Dataset Inference [5] utilizes
the common decision boundary of a given model and its copies
to detect the usage of a target model’s training dataset, while
IPGuard [7] and Peng et al. [9] create a fingerprint based
on data points near the classification boundary to profile a
model’s decision boundary. In addition to leveraging decision
boundary information, Zhang et al. [8] propose to embed
a special task-agnostic watermark into the target model’s
prediction behavior, which enables verification of a model’s IP
by extracting the hidden watermark with a surrogate model.

Nevertheless, the DL learning algorithm usually finds pat-
terns in the training data that map the input data attributes
to the target outputs and gets a DL model that captures these
patterns (i.e., the knowledge that the training dataset conveys).
Therefore, the training process of DL models can be regarded
as the transferring process of knowledge from the training
dataset to the corresponding model. Consequently, once a
trained DL model or its training data is released, there is no
mechanism for the entity that owns one part to establish a
clear relationship with the other. This would be of immense
utility when the model owner needs to claim the ownership
of this model as well as its post-processed versions generated
by model pruning [10], model distillation [11], or model fine-
tuning [12], or when a data owner suspects that his data has
been stolen [6] and expects to detect whether a suspect model
embezzles the stolen data.

In this paper, we aim to reveal the integrated and hidden
relationship between a given DL model and its training dataset.
We focus on one fundamental problem known as knowledge
representation of a dataset w.r.t. DL models trained on it:
how to effectively represent the knowledge transferred from a
training dataset to a DL model through the training process?
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To address this problem, we present a model-agnostic knowl-
edge representation method, which is independent of the model
structure, training algorithms, or data types. Our representation
method not only avoids isolating the model from its training
data but also effectively captures the intricate relationship
forged between the model and its training data throughout the
training process.

The basic idea is that the knowledge transferred from a
training dataset to a DL model can be uniquely represented
by the trained model’s decision boundary, which essentially
divides the data space into different class regions. Therefore,
we first find the data samples that lie on the decision boundary
of the given DL model (dubbed boundary supporting samples),
and then directly treat these samples as the proxy of the
desired knowledge representation. Although the idea sounds
simple, we still confront two major challenges. The first
challenge is how to effectively represent the decision boundary
of a DL model. Since DL models usually learn the decision
boundary with multiple layers and have a large number of
parameters, adequately representing the decision boundary in
a useful way is difficult. Inspired by recent works that leverage
adversarial attacks [13], [14], [15] to perform relevant tasks,
such as membership inference attacks [16], [17], [18] and
adversarial robustness enhancement [19], [20], we propose a
method to represent the decision boundary in the sample space
using adversarial attacks. Specifically, we leverage adversarial
attacks to find the boundary supporting samples to represent
the model’s decision boundary. To get the beneficial samples
for knowledge representation, we adopt a geometric perspec-
tive and design an iterative generation method to search for
the samples located on the given model’s decision boundary.
Our method uses the direction consistency between the normal
vector of the decision boundary and the vector from the
training sample to its corresponding boundary samples. Then
we can regard the relationship between the training sample and
its boundary sample generated by our method as the proxy for
the corresponding knowledge representation.

Due to the high cost of finding boundary samples, the sec-
ond challenge is that we can hardly construct the knowledge
representation with all or the majority of training samples.
Fortunately, various works have demonstrated that DL models
are usually biased toward overly smooth decision bound-
ary (i.e., low-frequency functionality) [21], [22], [23], [24].
Recent studies [25], [26] have demonstrated the success of
treating the model’s decision boundary as a linear func-
tion in the fields of adversarial examples and knowledge
distillation. To increase the effectiveness of our method,
we regard the decision boundary of DL models as a lin-
ear line, which dramatically simplifies the complexity of
characterizing the decision boundary. In such a simplified
case, we could use only one data sample and its projection
onto the decision boundary to alleviate the construction over-
head of our representation method. Consequently, for each
class in the training data, we find the boundary samples of
its centroid samples w.r.t. every decision boundary of the
DL model. Then we combine the boundary samples of all
classes to represent the knowledge learned by this model
(c.f. Fig. 1).

Fig. 1. Illustration of knowledge representation. Given a DL model and its
training data, we demonstrate that the centroid and the boundary samples of all
classes can represent the knowledge learned by the given model from the given
dataset. For each class, our method first gets the centroid sample of the training
data, and obtains the corresponding boundary samples which are located on
the decision boundary of the given model. Then our method aggregates these
samples together to form the complete knowledge representation.

To further validate the performance, we extend our knowl-
edge representation method to three application scenarios: IP
audit of training data, IP audit of DL models, and adversarial
knowledge distillation. We compare our method with the state-
of-the-art methods in each scenario [5], [7], [26]. We consider
several post-processing techniques, including model pruning,
retraining from scratch, and fine-tuning, which may breach
the validity of our knowledge representation. The experiments
demonstrate that our method effectively represents the knowl-
edge of a training dataset w.r.t. a DL model, and can even
retain the knowledge concerning the post-processed models.

We summarize our major contributions as follows:
• We formulate the knowledge representation problem for

DL models in the field of IP protection and contribute a
novel model-agnostic method for effectively representing
the knowledge present in a dataset, which can be learned
by DL models. We view the DL model, training data,
and training process as interconnected components, and
construct the knowledge representation by holistically
considering all these components.

• To effectively represent the knowledge transferred from
the training data to the DL model, we leverage the
training samples along with their corresponding samples
supporting the model’s decision boundary. Accordingly,
we introduce a novel method, specifically designed for
IP verification purposes, to effectively identify these
supporting samples from a geometric perspective.

• We evaluate our knowledge representation in three dif-
ferent cases: IP audit of training data, IP audit of DL
models, and knowledge distillation. The experimental
results validate that our representation method adeptly
profiles the relationship between a DL model and its train-
ing data throughout the training process. Consequently,
our approach can capture the knowledge transfer from
the training data to the learned DL model. The code has
been released for reproducibility purposes.1

1https://www.dropbox.com/s/upqzelbbtud8c6n/KR-Code.zip?dl=0
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The remainder of this paper is organized as follows.
Section II describes some preliminary knowledge on adver-
sarial examples and boundary supporting samples. Section III
formulates the problem of knowledge representation, followed
by our design in Section IV. Sections V, VI and VII respec-
tively evaluate the performance of our method on IP audit of
training data and DL models, as well as adversarial knowledge
distillation. Finally, Section VIII concludes this paper.

II. PRELIMINARY

A. Adversarial Examples

Although DL models have achieved tremendous success
in many applications, they have been demonstrated to be
easily fooled by specially crafted inputs, a.k.a. adversarial
examples [27]. An adversarial example is designed to look
“normal” to humans but can cause misclassification to a given
DL model. Generally, a single benign sample can traverse
the decision boundary of a given model through adding a
specially crafted adversarial noise, resulting in the creation
of an adversarial example:

min d(x′, x) such that M(x′) ̸=M(x) (1)

where x and x′ are the benign sample and its corresponding
adversarial example, respectively. The distance metric d mea-
sures the magnitude of adversarial noise added to x, and M
is the given DL model that x′ aims to fool.

Many methods have been developed to construct adversarial
examples in the past decade. Fast Gradient Sign Method
(FGSM) [13] is the first adversarial attack, which crafts the
adversarial noise in the same direction as the gradient of
the training loss w.r.t. the benign input. Carlini and Wagner
(C&W) attack [14] iteratively searches for the adversarial
noise that turns the benign input into an adversarial example.
Deepfool [25] generates the adversarial example directly along
the direction of the orthogonal projection of the benign input to
the decision boundary. HopSkipJump Attack [15] starts from
a largely perturbed adversarial example, and then updates this
example along the estimated gradient of a point at the model’s
decision boundary.

In this paper, we leverage the adversarial example gen-
eration methods to find the boundary supporting samples.
However, none of the existing methods leveraging adversar-
ial examples are particularly aimed at finding the decision
boundary, but try to move a benign sample beyond a nearby
decision boundary. To get samples that are beneficial to
the knowledge representation, we specially design a novel
adversarial example generation method, which can generate
boundary supporting samples to characterize the geometric
relationship between the training data and decision boundary
of the given DL model.

B. Boundary Supporting Samples

The notion of boundary supporting samples [26] comes
from the field of knowledge distillation, which aims to transfer
the knowledge from a large DL model to a smaller one.
In knowledge distillation, boundary supporting samples are
defined as samples that lie near the decision boundary of DL

models. These samples could contain the classification infor-
mation of the decision boundary, and therefore provide a more
accurate transfer of the inherent information. Correspondingly,
Heo et al. [26] apply a modified adversarial attack to generate
boundary supporting samples and demonstrate that they could
represent the knowledge contained in a DL model.

Recently, a part of works also leverage the boundary deci-
sion samples to help a small model to mimic a larger model’s
prediction behavior. DeepDIG [28] proposes a bi-direction
generation method for discovering the boundary supporting
samples, and then takes advantage of these samples as a
bridge between the decision boundary in the input space
and the embedding space, which provides a multifaceted
understanding of DNNs. Later, Qimera [29] improves the per-
formance of data-free model compression by using synthetic
boundary supporting samples generated from the superposed
latent embeddings.

Moreover, boundary supporting samples have been success-
fully deployed in many fields, such as domain adaption [30],
model quantization [29], and knowledge distillation [28].
However, the samples that support the decision boundary of
a model have limited capacity to accurately represent the
knowledge of a training dataset. Therefore, solely relying on
these samples for IP protection of DL models and training
datasets cannot achieve desired performance. In this paper,
in order to efficiently and accurately audit IP of DL models and
the corresponding training datasets, we leverage the boundary
supporting samples of a given DL model to explicitly represent
the knowledge learned by this model from its training dataset.

III. PROBLEM FORMATION

The objective of this work is to propose a method for
effectively representing the knowledge learned by a DL model
from a training dataset. For practical purposes, we consider
a third entity which has access to the prediction interface
of the trained model and the corresponding training data.
Therefore, the considered entity cannot control the training
process or modify the model structure. Formally, the process
of knowledge representation can be expressed as follows:

Represent(M, D)→ KR (2)

where M is the given model’s prediction interface, D is
the training dataset, and KR is the extracted knowledge
representation.

We aim to design a knowledge representation method that
preserves the following properties.

A. Fidelity

The method is desired to well represent the knowledge
contained in a dataset that can be learned by DL models. With
this property, the knowledge representation has the ability to
play the role as a medium for transferring knowledge.

B. Robustness

If a DL model is a post-processed version of the target
model (i.e. knowledge distillation, model extraction, or model
pruning), the representation of the post-processed model is
expected to be very close to that of the target model.
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C. Uniqueness

The knowledge representation should be unique to the target
DL model and its training data. If a DL model is not the
target model or its post-processed version, the knowledge
representation for this model should be distinguishable.

D. Independence

The representation method should be independent of the
model training algorithms and thus not require the modifica-
tion of the training process and model structures of DL models.

IV. KNOWLEDGE REPRESENTATION

A. Overview

In the design of the knowledge representation, we consider
that the knowledge transferred from a training dataset to a DL
model can be uniquely represented by the decision boundary
of the training model. To represent the decision boundary,
we design an adversarial example generation method to find
the boundary samples of the training data located on the given
model’s decision boundary. Then the knowledge of the train-
ing data is represented by the relationship between training
data and their corresponding boundary representation samples.
Overall, our knowledge representation mainly includes the
following two parts:

1) Decision Boundary Representation: We specifically
design a boundary sample generation method to represent the
given model’s decision boundary. In this approach, we find
an adversarial version of a benign sample x and project it
onto the decision boundary of a given DL model M, thus
obtaining a boundary supporting sample denoted as x̄. To
obtain x̄, our method leverages the normal vector on the
decision boundary of M in the vicinity of x to get the
perturbation required to misguide the prediction of M. Then
x̄ serves as a representation of the decision boundary for the
given model.

2) Knowledge Representation Construction: With the
boundary representation, we use the minimum perturbation
from x to x̄ as the knowledge transferred between x and M.
Considering a whole training dataset and a multi-class DL
model, for each class in the training data, we find the boundary
samples of the class centroid samples w.r.t. every decision
boundary of the DL model. Then we combine the boundary
samples of all classes to represent the knowledge contained in
the training dataset learned by this model.

B. Decision Boundary Representation

In this section, we introduce our boundary sample genera-
tion method in detail.

1) Boundary Representation Sample Generation: In order
to represent the decision boundary of a DL model, we first
design a novel adversarial attack to get the adversarial example
x̃ for the training sample x w.r.t M. Then we project x̃ to the
decision boundary of the given model. However, a trained DL
model and its training data are the product of massive cost
and expertise efforts. Usually, they are kept secret in practice
to protect the owner’s benefit. Furthermore, the owners often

Fig. 2. Illustration of our boundary representation sample generation.
(a) Initializing an adversarial point x̃0 at the first iteration. (b) Binary search
to find the boundary point x̄i with x̃i−1 and x. (c) Estimate normal vector
at x̄i and compute x̃i−1 − x, and then get the loss of the objective function
by Equation (4). (d) Optimize the objective function and update x̄i → x̃i .
(e) The adversarial point x̃i is used as the initial point for the next iteration.

make their DL models available to the public to obtain
financial interest, typically in the form of black-box APIs.
Therefore, to ensure that the method is agnostic to both the
model and the data, we consider a targeted adversarial attack
against a black-box model, which aims to generate x̃ to change
the predicted label of x to a certain label yk :

min
v

D(x, x̃) such that M(x̃) = yk (3)

where M is the target model, yk is the targeted label which
could be any label but M(x), and D is a distance function for
x and x̃, such as cosine distance and L2 distance.

In order to generate x̄, we are motivated by the geometry
property that the adversarial perturbation v(v = x̃− x) should
align with the normal vector direction of the decision bound-
ary of the model M at the boundary sample x̄. Therefore,
we use cosine similarity to measure the direction deviation
and carefully design the objective function as follows:

arg min
x̄

L(x̄) = −
< x̃− x, N|x̄,M >∥∥x̃− x

∥∥
2

∥∥N|x̄,M
∥∥

2
s.t. M(x̄)|yk =M(x̄)|ygt

x̄ = λx+ (1− λ)x̃
λ ∈ [0, 1] (4)

where <, > represents the inner product of vectors, ∥·∥2 rep-
resents the length of the vector, N|x̄,M is the normal vector of
M’s decision boundary at the boundary sample x̃, and x̃− x
is the adversarial perturbation. yt and ygt are the adversarial
targeted label and the ground truth label of x, respectively.

To optimize the above objective function, we combine the
binary search and gradient descent mechanisms. For clar-
ity, we name our boundary sample generation method as
Minimizing Angular Deviation (MinAD). The optimization
process of MinAD is described in Algorithm 1. It is worth
noting that the initial adversarial example x̃0 could be any
random sample that satisfies the condition M(x̃0) = yk .

The process of MinAD is illustrated in Fig. 2, which mainly
contains three steps:

2) Binary Search: Given the target sample x and its
adversarial version x̃ meeting the condition of M(x̃) = yt ,
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Algorithm 1 MinAD Algorithm
Input: Target sample x, initial adversarial example x̃0, target
model M.
Parameter: Max iteration number I , binary search threshold
θ , sampling size B, sampling radii δ, initial learning rate η.
Output: Boundary sample x̄.

1: for i = 1 to I do
2: x̄i ← BinarySearch(x, x̃i−1, M, θ)

3: N|x̄i ,M← NormalVectorEstimation(x̄i ,M, B, δ)

4: L(x̄i−1)← (x̃i−1 − x, N|xi ,M)

5: x̃i ←ExampleUpdate(xt , L(x̃i−1), η)

6: end for
7: x̄I ← BinarySearch(x, x̃I , M, θ)

8: return x̄I

we find the boundary sample x̄ by using the binary search
algorithm. As shown in Fig. 2, the boundary sample is the one
located at the decision boundary of the target model along the
line between x and x̃.

3) Normal Vector Estimation: Given the sample x̄ located
at the decision boundary of M, we approximate the normal
vector N|x̄,M via the Monte Carlo estimation method:

N|x̄,M :=
1
B

B∑
b=1

φ(x̄+ δub)ub, (5)

φ(x̄+ δub) =

{
+1, M(x̄+ δub) ̸= yk

−1, M(x̄+ δub) = yk .
(6)

where φ(x̄ + δub) represents whether the sample x̄ + δub is
adversarial or not, {ub}

B
b=1 are i.i.d. drawn from the uniform

distribution over the d-dimensional sphere, δ is a small positive
constant and is proportional to d−1 [15], and B is the number
of disturbed groups.

4) Example Update: We implement our data updates
based on the objective function in Equation (4). We obtain
the gradient ∇L(x̃i ) directly and use the gradient descent
algorithm for the adversarial example updates as follows:

x̃i = x̄i−1 − η∇L(x̄i−1) (7)

where η represents the learning rate of the updates, and we
achieve high optimization efficiency by adjusting the learning
rate dynamically. In particular, we reduce the learning rate
by half after each update, and set an appropriate threshold
to control the step size per update. After that, we use binary
search again to bring it back to the decision boundary.

Finally, we treat the generated sample x̄I as the representa-
tion of the decision boundary of the target model, w.r.t. the
given target sample x.

C. Knowledge Representation Construction

After generating the boundary sample x̄I , our subsequent
objective is to effectively represent the knowledge that has
been transferred between the data x and the model M.
We first compute the perturbation r = x̄I −x. Then we regard
the perturbation r as the knowledge transferred between the
training sample x and the DL model M.

Now we extend the data-model relationship measurement
method to the case of the whole dataset and multi-class model.
For each class in the training dataset, we select the centroid
sample and find its boundary samples at the decision boundary
of every class of the DL model. Thus, the knowledge learned
by this model can be represented by all boundary samples.
Therefore, we need to select the centroid sample first and then
construct the knowledge representation.

1) Centroid Sample Selection: Based on the existing
work [31], we conclude that the selection of a centroid sample
greatly affects the final performance, and so we aim to choose
a simple but effective selection method. Consider a training
dataset S = S0 ∪ S1 ∪ . . . ∪ SK−1, where K is the number of
classes. We choose the centroid sample of each class, defined
as the sample with the lowest cumulative distance to other
points within the same class. Specifically, we find the centroid
sample sk for class k (0 ≤ k < K ) as follows:

min
st
k∈Sk

N−1∑
j=0

∥∥∥st
k − s j

k

∥∥∥
2

(8)

where N represents the number of data in class k (0 ≤ t,
j < N ), ∥·∥2 represents the length of the vector. st

k is taken as
the centroid sample sk of class k. We get the centroid samples
of all K classes.

2) Knowledge Representation Matrix: We next construct
the knowledge representation matrix to further represent
the knowledge of training data. For class k, we get the
perturbations of sk to the model M’s boundaries, and con-
struct the knowledge representation matrix as KRMk =

(r0, r1, . . . , rC−1), where C represents the number of target
labels for boundary sample generation, rc represents the
perturbation of sk to the boundary with class c. We combine
the knowledge representation matrix of each class and get the
knowledge representation matrix KRM of the whole training
dataset, which is denoted as:

KRM = (KRM0, KRM1, . . . , KRMK−1)
T

=


r0

0 r1
0 r2

0 · · · rC−1
0

r0
1 r1

1 r2
1 · · · rC−1

1
...

...
...

. . .
...

r0
K−1 r1

K−1 r2
K−1 · · · rC−1

K−1

 (9)

Finally, the knowledge representation matrix will represent
the knowledge representation of training data with centroid
samples. In general, C is equal to K . Nevertheless, due to
the complexity of the operation for some large datasets such
as CIFAR-100 and TinyImageNet, we appropriately reduce C
to improve the effectiveness of our knowledge representation.
It is worth noting that the knowledge can also be expressed
in terms of the norm of r, i.e., ∥r∥2 in specific application
scenarios, such as IP audit of the training dataset. We would
evaluate the performance of our knowledge representation in
the form of ∥r∥2 in the following sections.

V. CASE 1: IP AUDIT OF TRAINING DATA

A. Threat Model

The IP audit of training data aims to verify whether a DL
model embezzles a training dataset whose IP permission the
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model trainer does not have. The state-of-the-art work Dataset
inference (DI) [5] makes use of the basic idea that knowledge
contained in the stolen model’s training set is common to all
stolen copies. Therefore, if our knowledge representation could
achieve a resemble or even improved performance compared
with DI, we could verify that our representation method can
effectively represent the knowledge of a training dataset.

1) Attack Model: We consider a victim V with its private
dataset SV . The goal of an adversary A is to extract the
knowledge or by-products of SV , and use it to train its
model fA. The adversary A can breach IP of the victim’s
training data in many ways. For instance, A is able to gain
complete access to the victim’s private dataset SV or the
queries of the victim’s model fV , and trains its own model
fA with the information of the victim’s dataset and model.
Besides, A can steal the model fV by model extraction [32],
which is the most common way of violating the IP of the
training data.

2) Target Model: The victim V trains a model fV on its
private dataset SV . The victim V aims to judge whether the
suspected model fA is derived from its private dataset SV .

B. Comparison Methods

1) Dataset Inference (DI): [5]. For DI, the victim V
extracts the distances between a part of samples and decision
boundary of the target model, and labels these distances with
in or out labels, which means whether the corresponding
sample belongs to V’s private dataset SV or not. These labeled
distances are used to train a regression model gV to predict
whether a sample contains the private information from SV .
Finally, we sample an equal number of samples from S and
SV to query suspected model fA, and calculate the confidence
score vector with gV , which would be used to perform the IP
audit of DI. DI proposed two different methods for distance
measuring: the white-box adversarial attack named MinGD
and Blind Walk method for the black-box setting.

2) DI + MinAD: We replace MinGD and Blind Walk
with our MinAD in DI. The distance between the generated
adversarial sample and the target sample is taken as the
distance from the target sample to the decision boundary. The
remaining settings of this method remain consistent with those
used in DI.

3) DI + KRM: We replace the randomly selected samples
in DI with the class centroid samples of training data, thereby
making use the KRM contained adversarial examples to per-
form the IP audit. The remaining steps are the same for DI.
We generate KRM by MinGD and Black Walk, respectively.

4) DI + MinAD + KRM: We simultaneously replace the
distance measurement method and the adversarial examples
corresponding to selected samples with our MinAD and KRM.
The remaining steps are the same for DI.

C. Experimental Setup

1) Datasets and Models: We use CIFAR-10 [33] and
CIFAR-100 [33] datasets to evaluate the performance for
comparisons.

CIFAR-10 Dataset. CIFAR-10 dataset contains 50,000 train-
ing color images and 10,000 testing color images from
10 classes. Each class has 5,000 training images and 1,000
testing images. The size of each image is 32× 32.

CIFAR-100 Dataset. CIFAR-100 dataset has the same for-
mat as CIFAR-10, but it has 100 classes with 600 images
each. In particular, each class has 500 training images and
100 testing images.

For both datasets, we useachieve WideResNet [34] with a
depth of 28 and a widening factor of 10 (WRN-28-10) as the
victim model, and this model is trained with a dropout rate
of 0.3. For the stealing attack model, we use WRN-16-1 on
CIFAR-10 and WRN-16-10 on CIFAR-100, respectively.

2) Stealing Attacks: The adversary A would like to steal
the private knowledge SV of victim V and train its own model
fA. We consider seven model stealing attacks and involve
different levels of access to the private knowledge of the victim
as follows.

(1) A is able to gain complete access to the dataset SV .
(a) Model distillation [35]. A wants to enhance the perfor-
mance of smaller model fA by the logits of larger model fV .
(b) Pruning. A attempts to train an alternative architecture on
SV and improve the robustness of fA.

(2) A has direct access to the fV . (a) Fine-tuning. A uses
the confidence vectors of the fV on unlabeled public data to
optimize its decision boundary. (b) Zero-shot learning [36].
A performs the data-free knowledge transformation process
to train its model.

(3) A can steal the fV by model extraction [32]. (a)

Model extraction using labels. A trains fA on a pseudo-dataset
provided by V . (b) A trains its fA to minimize the KL
divergence with the outputs of fV on a public (or non-task
specific) dataset.

3) Parameter Settings: For the model training, we fine-tune
the student model for 10 epochs and train it for 20 epochs on
the whole training set. Moreover, we use a subset of 500,000
unlabeled TinyImages closest to CIFAR-10 [37] for model
extraction and fine-tuning. Additionally, we use cross-entropy
loss and SGD optimizer to train the models, with the learning
rate decaying by a factor of 0.2 at the end of the 0.3×, 0.6×,
and 0.8× the total number of epochs.

For MinAD, we set 20 iterations and 1,000 queries per
iteration. We use SGD optimization with a learning rate
decaying by half from 16 to 0.2 in each round. In the case
of CIFAR-100, we only consider the 10 most confident target
classes for the centroid sample of each class.

For DI, we take 200 samples from SV and 200 from S to
train gV , and 10 samples from SV for hypothesis testing.

4) Metrics: We use the same metrics as DI [5]. We calculate
the confidence score vectors c and cV from the public and
private datasets with gV . Same as DI, we form a two-sample
T-test on the distribution of c and cV , and then derive the
p-value from the one-sided hypothesis H0 : µ < µV . If
a vector contains samples from SV , it would get a lower
confidence score and decrease the p-value of the hypothesis
test. To capture the average confidence of the hypothesis test in
claiming that a model was stolen, we calculate the effect size
1µ = µ − µV and p-value, where µ = c and µV = cV are
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TABLE I
THE PERFORMANCE OF IP AUDIT OF TRAINING DATA ON CIFAR-10

TABLE II
THE PERFORMANCE OF IP AUDIT OF TRAINING DATA ON CIFAR-100

mean confidence score vectors of public and private datasets
respectively. If the p-value is less than a predefined threshold,
H0 is rejected and the model is marked as stolen. For more
details about the calculation of p-value and 1µ, please refer
to DI [5].

D. Experimental Results

1) Performance of IP Audit of Training Data: Table I and
Table II show the results of IP audit of the data. We consider
seven model stealing attacks in our experiments. Besides,
we introduce an attack as a comparison baseline, dubbed as
Source Attack, which directly steals the victim model. The
larger 1µ and smaller p-value mean the better performance
of IP audit of training data. The results show that, compared
with MinGD and Blind Walk proposed by the original DI,
DI with MinAD achieves better performance regardless of the
use of KRM. For instance, DI with MinAD achieves a 1µ

of 1.00 when the attacker can only access the target model’s
prediction interface for CIFAR-10. In such a case, MinGD and
Blind Walk can only achieve a 1µ less than 0.90. Moreover,
combining DI with both MinAD and KRM could achieve an
improved 1µ of 1.97, which outperforms the original DI.
Besides, when we combine MinGD or Blind Walk with KRM,
the performance of DI also improves by more than 0.5 for 1µ,
while the corresponding p-values are all less than 10−4.

Our proposed MinAD provides a more accurate measure-
ment of the relationship between the training data and the
corresponding DL model, thereby enhancing the performance
of DI. Additionally, our KRM enhances DI performance

with fewer samples. Overall, our representation encompasses
the most crucial and representative knowledge of the data,
effectively capturing the relationship between the given model
and its training data.

From the experimental results shown in Tables I and II,
we can find an abnormal phenomenon confronting the Source
Attack. DI with MinAD has the smallest p-value, while
DI (Blind Walk) and DI + MinAD + KRM have similar
performance, which seemingly indicates that our MinAD and
KRM cannot improve the performance of DI. The main
reason for this phenomenon is that in the case of the model
stolen by the Source attack, the training dataset of the stolen
model is an exact replica of the victim model’s training
dataset. Consequently, the center samples of the KRM will be
identical to those of the victim model. As MinAD exhibits
greater accuracy in establishing the relationship between
samples and decision boundaries, the fingerprint generated
by DI+MinAD+KRM becomes challenging to differentiate
between the victim model and the model stolen by the Source
attack, thus leading to a similar performance as DI (Blind
Walk). On the other hand, due to the precision of MinAD, DI
could construct more precise fingerprints with multiple random
training samples. Consequently, DI with MinAD exhibits
a substantial improvement in performance, resulting in the
smallest p-value when facing the Source attack.

2) Impact of Number of KRMs: The number of KRMs
is directly related to the number of adversarial examples
generated, thus impacting the final performance. To get more
than one KRM, we divide each class equally and get centroid
samples of each part as the sub-centroid sample. The KRMs
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Fig. 3. The performance of IP audit of training data on CIFAR-10 with
different number of KRMs.

corresponding to sub-centroid samples will be used in the
experiments with those of the centroid sample.

The proportion of important knowledge contained in the
KRM will decrease if the number of KRMs becomes exces-
sive. Therefore, we employ a limited number of KRMs,
ranging from 1 to 5, in order to explore their impact. We
combine DI with MinAD and KRM for CIFAR-10 dataset.
The results are shown in Fig. 3. For DI, we get a larger effect
size 1µ with an increasing number of KRMs. Notably, 1µ

can approach 2.0 for most of the suspected models when
only five KRMs are involved. We speculate that training
the regression model gV with more samples improves its
prediction performance.

VI. CASE 2: IP AUDIT OF DL MODELS

A. Threat Model

The objective of IP audit of DL models is to verify whether
a given DL model is a stolen or the post-processed version
of the target model. The state-of-the-art work IPGuard [7]
makes use of the key observation that a DNN model can be
uniquely represented by its decision boundary. The decision
boundary is learned from the training data and thus essentially
represents knowledge that the model learns from its training
data through the training process. Therefore, if our knowledge
representation could achieve a similar or even improved per-
formance compared with IPGuard, we could demonstrate that
our method could achieve the goal of representing knowledge.

1) Attack Model: Consider a victim V with its model fV .
The goal of the adversary A is to steal the prediction function
of model fV to obtain its own model fA. A can get access
to the model fV ’s training data, training settings, and model
parameters directly. With these information, A could derive a
stolen model that has a similar function as the target model.

2) Target Model: The victim V trains its own model fV
on its training dataset. V would like to determine whether the
suspected model fA has stolen the prediction function of fV .

B. Comparison Methods

1) IPGuard: [7]. The basic idea of IPGuard is that a
model can be uniquely fingerprinted by its decision boundary.
Therefore, IPGuard leverages the samples near the decision
boundary as the fingerprints to perform the IP audit. If the
suspected model predicts the same labels for most data points

near the decision boundary as those of the target model, the
suspected model is then regarded as the stolen version of
the victim model fV . IPGuard generates a set of samples S
near the decision boundary of fV through adversarial attacks.
The victim V queries the prediction interface of the suspected
model fA and gets the prediction labels of these samples.
If the predicted labels of fA are similar to V’s own predictions,
fA is considered as the counterfeit version of fV . IPGuard
designs a white-box adversarial attack to generate fingerprints.

2) IPGuard + MinAD: We directly replace the adversarial
example generation method in [7] with our MinAD, and the
sample set S is composed by adversarial examples generated
with different initialization. The rest of the settings are the
same as IPGuard.

3) IPGuard + KRM: We replace the composition of the
fingerprint set S with our KRM. In particular, for class k, the
sample set Sk is the composition of the centroid sample sk and
KRMk . The rest is the same as IPGuard. We use the adversarial
attack of IPGuard to generate each adversarial example in
KRM.

4) IPGuard + MinAD + KRM: We replace the adversar-
ial example generation method and the fingerprint samples
with our MinAD and KRM simultaneously. In particular, for
class k, the sample set Sk is the combination of the centroid
sample sk and KRMk . The rest is the same as IPGuard.

C. Experimental Setup

1) Datasets and Models: We use CIFAR-10 and
CIFAR-100 in this section. The details of these datasets
can be found in Section V. ResNet20 with an accuracy
of 0.91 is used as the victim model for CIFAR-10. For
CIFAR-100 dataset, we use WRN-22-4 with an accuracy of
0.76. All DL models are trained with 25 epochs.

2) Stealing Attacks: The adversary A aims to steal the
complete model fV of victim V . As for the suspected
model fA, we consider three post-processing, including fine-
tuning, retraining, and pruning. These post-processing models
are called positive suspected models. Besides, we set two types
of models which are different from fV , where attackers train
their models without stealing the model fV , and we call them
the negative suspected models.

(1) fA is the positive suspected model. (a) Fine-tuning.
A fine-tunes any layers of fV using the training data. Here
we consider the case where only the last layer (i.e., fully con-
nected layer) is fine-tuned, and others are fixed. (b) Retraining.
A initializes the weight of any layers of fV and trains the
model using the training data. Here we consider the case where
only the model weightsW of the last layer is fine-tuned, and
the rest weights are fixed. (c) Pruning. A can achieve model
compression and network lightweight by weight pruning [38].
Here we consider A prunes 10% of model parameters that
have the smallest absolute value of fV and retrains the
model.

(2) fA is the negative suspected model. (a) Same-
architecture models (SA). We define the models that have
the same architecture but different parameter initialization,
optimizer, or loss functions with the victim model as the nega-
tive models. (b) Different-architecture model (DA). We adopt
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TABLE III
THE COMPARISON RESULTS OF IP AUDIT OF DL MODELS ON CIFAR-10 AND CIFAR-100

LeNet-5 (DA-LENET) and VGG16 (DA-VGG) architecture
for CIFAR-10 and CIFAR-100 to construct the negative sus-
pected model.

3) Parameter Settings: For model training, we load the
pre-trained model using the torchvision package. We train
VGG16 for 5 epochs and other suspected models for 25 epochs
on the entire training set to ensure model convergence. We use
cross-entropy loss as our loss function and the SGD optimizer.
The learning rate is decayed by a factor of 0.2 at the end of
0.3×, 0.6×, and 0.8× the total number of epochs.

For MinAD, we set 20 iterations and 1,000 queries per
iteration. We use SGD optimization with a learning rate
decaying from 16 to 0.2, reducing by 0.5 each round. In the
case of CIFAR-100, we generate adversarial examples only for
the centroid samples corresponding to the decision boundaries
of the 10 most confident target classes.

4) Metrics: We use the same metrics as IPGuard [7]. We
use the matching rate as our metric, which represents the
proportion of samples for which the prediction labels of
the suspected model match those of the victim’s model. If
the matching rate exceeds a predefined threshold, we conclude
that the suspected model is a post-processing of the original
model.

D. Experimental Results

1) Performance of IP Audit of DL Models: In this case,
we consider six types of suspected models constructed by dif-
ferent post-processing. For the original IPGuard, we randomly
sample 100 (resp. 1000) samples from CIFAR-10 dataset (resp.
CIFAR-100) and then generate the corresponding adversarial
examples as the model IP fingerprints. We use only one KRM
as the fingerprints for CIFAR-10. Particularly for CIFAR-100,
to ensure the fairness of the experiments, we only generate
10 adversarial examples for each class centroid sample. There-
fore, the total number of samples contained in the KRM equals
1000. We use the matching rate to measure the performance
of the model IP audit, which is denoted as the fraction of
fingerprint samples whose labels are predicted by the suspect
model and align with those predicted by the target model.
A positive suspected model (i.e. the post-processed version of
the target model) should have a large matching rate, whereas
the negative model is anticipated to have a low rate.

Table III shows the performance of IP audit for DL models.
Results show that our MinAD can improve the performance
of IPGuard, indicating that the adversarial samples generated
by MinAD can provide a more accurate representation of
the decision boundary than those generated by IPGuard.
We also find that IPGuard cannot identify suspected mod-
els with the same architecture as the target models. When
combining IPGuard with MinAD, we can achieve improved
matching rates of 0.06 for CIFAR-10 and 0.07 for CIFAR-100
respectively. Additionally, the performance of IPGuard can be
further improved by 10% on average when combined with
KRM. When we combine IPGuard with both MinAD and
KRM, the improved IPGuard achieves the best performance.
The matching rate of positive and negative suspected models
can reach 1.0 and 0.0, respectively, for both CIFAR-10 and
CIFAR-100 datasets. These experimental results demonstrate
that our knowledge representation can effectively represent
what a DL model learned from the training data.

Specifically, when considering the CIFAR-100 dataset,
IPGuard+MinAD exhibits inferior performance compared to
IPGuard for several types of suspected models. This can be
primarily attributed to the heightened effectiveness of our
MinAD approach in establishing a more precise relationship
between a training sample and the decision boundary of the
DL model. MinAD outperforms IPGuard in this regard by
generating fingerprints that are more sensitive to changes in the
decision boundary, ultimately resulting in a decreased match-
ing rate of the suspected models. On the other hand, when
utilizing KRM, we strategically obtain boundary-supporting
samples exclusively from the nearest boundaries of the training
samples. This approach enhances the model’s resilience and
ability to tolerate changes in the decision boundary. The
experimental results clearly demonstrate that IPGuard + KRM
outperforms IPGuard, supporting the aforementioned point.

2) Impact of Number of KRMs: To evaluate the impact of
the number of KRMs on the performance of our knowledge
representation, we change the number of KRMs from 1 to 5.
We combine DI with MinAD and KRM for CIFAR-10 dataset.
Fig. 4 shows the experimental results, which indicate that
the number of KRMs does not affect the matching rate for
IPGuard. This is because the generated adversarial examples
are only used for testing. In addition, another reason is that
the total number of examples is limited.
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Fig. 4. The performance of IP audit of DL models on CIFAR-10 with
different number of KRMs.

VII. CASE 3: ADVERSARIAL KNOWLEDGE DISTILLATION

Adversarial knowledge distillation aims to transfer the
knowledge contained in a large model (i.e., the teacher model)
to a small model (i.e., the student model) using samples close
to the decision boundary of the teacher model. It is well known
that the performance of a model highly depends on how well
the model learns the true decision boundary from the training
data distribution. Therefore, knowledge distillation with the
teacher model’s decision boundary information could improve
the distillation performance of the student model. Based on
this idea, Adversarial knowledge distillation (AdvKD) [26]
utilizes an adversarial attack to find samples near the decision
boundary of the teacher model and trains a student model
on these samples. AdvKD achieves state-of-the-art perfor-
mance but with fewer training samples. This indicates that the
samples close to the decision boundary of a model convey
the knowledge of this model. Therefore, if our knowledge
representation could achieve a resemble or even improved
performance compared with AdvKD, we could verify that our
representation is effective in conveying the knowledge of a
model and its corresponding training data.

A. Comparison Methods

1) Adversarial Knowledge Distillation (AdvKD): [26].
Considering a teacher model fT and a student model fS ,
AdvKD generates a set of samples near the boundary of
fT and computes the boundary supporting loss with these
samples, which is introduced to transfer the information about
the decision boundary from the teacher model to the student
model. This loss is then used in the training of fS along with
the classification loss and knowledge distillation loss [35].
AdvKD [26] leverages Deepfool [25] to generate the adver-
sarial samples that are close to the decision boundary of fT .

2) AdvKD + MinAD: We replace Deepfool with our
MinAD in AdvKD and get the samples near the boundary
using MinAD.

3) AdvKD + KRM: We consider all adversarial examples
corresponding to KRM as the samples near the boundary
for AdvKD. Then we use the adversarial examples from our
KRM to train fS . Specifically, for class k, the sample set
is a combination of the centroid sample sk and KRMk. The
remaining steps remain unchanged. We use the adversarial
attack described in [26] to generate KRM.

TABLE IV
THE TOP-1 TEST ACCURACY (%) OF STUDENT MODELS FOR KNOWLEDGE

DISTILLATION ON CIFAR-10

4) AdvKD + MinAD + KRM: We replace the adversarial
example generation method and the training data of fS in
AdvKD with MinAD and KRM simultaneously. The process
of knowledge distillation remains the same as that of AdvKD.

B. Experimental Setup

1) Datasets and Models: We use CIFAR-10 and Tiny-
ImageNet to evaluate the performance of our knowledge
representation in the case of knowledge distillation.

CIFAR-10 Dataset. The dataset information of CIFAR-10
can be found in Section V.

TinyImageNet Dataset. TinyImageNet dataset contains
100,000 training color images and 10,000 testing color images
from 200 classes. Each class has 500 training images and
50 testing images. The size of each image is 64× 64.

For CIFAR-10 dataset, we use ResNet-26 with an top-1 test-
ing accuracy of 0.92 as the teacher model, and use ResNet-8,
ResNet-14, and ResNet-20 as the student models successively.
For TinyImageNet dataset, a pre-trained ResNet-50 with a
top-1 testing accuracy of 0.57 and a top-5 accuracy of
0.81 is selected as the teacher model. The teacher models
are pre-trained for more than 20 epochs on this dataset.
A ResNet18 is used as the student model.

2) Parameter Settings: For the generation of adversarial
samples supporting the decision boundary of fT , we randomly
select the sample as the initial sample whose ground truth label
has the highest probability among both the teacher and student
models. We set the decision boundary of fT as the adversarial
label closest to the initial sample’s predicted label. We train the
student model for at least 20 iterations and choose 64 initial
samples per batch for each iteration.

For MinAD, we set the number of iterations to 20 and the
number of queries per iteration to 1,000. We use the SGD opti-
mizer with a learning rate decaying by half from 16 to 0.2 in
each round for CIFAR-10 and from 1280 to 16 for TinyIm-
ageNet. In the case of TinyImageNet, we only generate the
adversarial examples concerning the decision boundaries of
the 10 most confident target classes.

3) Metrics: Following [26], we use the test accuracy of the
student model to measure the performance of the comparisons.

C. Experimental Results

1) Performance of Knowledge Distillation: Table IV and
Table V show the results of knowledge distillation. We eval-
uate the performance of the student models and record the
corresponding top-1 accuracy for CIFAR-10 and the top-1
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TABLE V
THE TEST ACCURACY (%) OF STUDENT MODELS FOR KNOWLEDGE

DISTILLATION ON TINYIMAGENET

Fig. 5. The performance of knowledge distillation on CIFAR-10 and
TinyImageNet with different number of KRMs.

and top-5 test accuracies for TinyImageNet. The experimental
results show that our MinAD can improve the performance
of AdvKD, regardless of whether KRM is used or not. For
instance, the test accuracy of the student model of ResNet8 can
achieve 84.49% when AdvKD is combined with MinAD for
CIFAR-10 dataset. This is significantly better than the original
AdvKD which can only obtain a student model with a test
accuracy of 81.88%. For TinyImageNet dataset, the student
model can get a top-1 test accuracy 53.34% and a top-5 test
accuracy of 77.25% when we combine AdvKD with MinAD.
In contrast, the original AdvKD only gets the top-1 and top-5
accuracies of 44.00% and 71.25%, respectively.

Based on the experimental results, it is evident that
KRM, despite containing a limited number of samples near
the teacher’s decision boundary, can achieve comparable or
even superior performance compared to the original AdvKD
method. However, it falls short of the performance achieved by
AdvKD when integrated with MinAD. Among all the methods
evaluated, AdvKD integrated with MinAD emerges as the top-
performing approach. The main reason lies in the difference
in how data is utilized for knowledge distillation. AdvKD
and AdvKD with MinAD leverage a substantial amount of
data during the distillation process. In contrast, AdvKD with
KRM relies on a single KRM to distill knowledge from the
teacher model to the student model. It is noticed that the
dataset sizes associated with this single KRM are significantly
smaller, consisting of only 100 samples for CIFAR-10 and
2,000 samples for TinyImagenet, while AdvKD employs a
larger dataset of 10,000 samples. Consequently, the exclusive
use of a single KRM with AdvKD leads to a decrease in the
test accuracy of the distilled models compared to AdvKD with
MinAD.

2) Impact of Number of KRMs: Like other cases,
we increase the number of KRMs from 1 to 5. We combine
AdvKD with both MinAD and KRM for CIFAR-10 dataset

and TinyImageNet dataset. Fig. 5 shows that the test per-
formance of the student models increases with the number
of KRMs growing. Specifically, it is observed that when
utilizing 5 KRMs (i.e. 500 samples for CIFAR-10 and 10,000
samples for TinyImageNet) as training data, the performance
of AdvKD surpasses that of the case with only one KRM.
For instance, in the case of the CIFAR-10 dataset and a
ResNet20 student model, the accuracy of the student model
improves to 88.20% when employing 5 KRMs in conjunction
with both AdvKR and MinAD. In contrast, the accuracy with
only one KRM is recorded as 87.24%.

VIII. CONCLUSION

In this paper, we propose a knowledge representation
method that captures the knowledge contained in a dataset
learned by DL models. We introduce a novel generation
method to identify samples located on the decision boundary
of a given DL model. Subsequently, we extract the boundary
supporting samples from the class centroid samples of the
training data and utilize them as proxies for knowledge rep-
resentation. Our knowledge representation framework can be
seamlessly applied to IP audit of training data, IP audit of DL
models, and knowledge distillation. Experimental results from
three application scenarios demonstrate that our knowledge
representation improves the performance of state-of-the-art
approaches in these domains. We consider our work to be a
significant step towards characterizing the knowledge embed-
ded in a dataset learned by DL models and shedding light on
the intrinsic properties of the DL training process.

In future research, we intend to advance our method
by incorporating more sophisticated representations of the
model’s decision boundary, surpassing the current approxima-
tion of a straight line. This expansion will enable us to explore
the nuanced knowledge embedded within the decision bound-
ary structure. With the fine-grained representation, we could
develop efficient representations capable of handling intricate
decision boundary forms, thereby leading to performance gain
across diverse application scenarios.
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