
1

LLMGRAPH: Label-free Detection against APTs
in Edge Networks via LLM and GCN

Tianlong Yu, Gaoyang Liu, Chen Wang, and Yang Yang

Abstract—In the growing trend of remote working, millions
of edge networks (e.g., homes or branch offices) are increasingly
threatened by Advanced Persistent Threats (APTs), because of
the weakened segmentation between business and non-business
devices in remote working environment. Despite the fact that
numerous APT detection mechanisms have been proposed, all of
them are struggling to handle the complex structure, the massive
scale and the diverse topology of edge networks. Can recent
machine-learning advances tackle these APT detection pain points
in edge networks? The GNNs (Graph Neural Networks) seems
to be suited to capture the complex structure, but its adjacency
matrix fails to capture key network flow context. Additionally,
GNNs require extensive manual labeling, which is not scalable.
LLMs (Large Language Models) have the potential to provide
automatic labeling for the GNNs, but they lack the supplementary
security context needed for effective labeling. To address these
gaps, we present LLMGRAPH, which incorporates extended
GCNs (Graph Convolutional Networks) and domain-specific
RAG (Retrieval-Augmented Generation) pipeline to achieve label-
free detection against APTs in edge networks. LLMGRAPH’s
extended GCNs model can capture network flow context and
direction. LLMGRAPH’s domain-specific RAG pipeline can sup-
plement key security contexts, including device vulnerability and
network flow, for effective labeling. Additionally, LLMGRAPH
provides an LLM aggregator to augment and merge the diverse
topology of the edge networks. Compared to the state-of-the-
art mechanisms, LLMGRAPH proves effective and scalable,
improving the F1-score by at least 46.9%, and the training time
for 1 million edge networks is within 1000s.

Index Terms—Network Security, APT Detection, LLM, GCN.

I. INTRODUCTION

The security landscape of the work environment had shifted
greatly in the post-pandemic era. Millions of people are
working more flexible through edge networks that interconnect
homes, branch offices, or shared workspaces. The boundary
between heavily secured enterprise networks and vulnerable
edge networks is disappearing. Now, business devices (e.g.,

This study was supported by the National Natural Science Foundation of
China under Grant 62302177, Grant 62272183, Grant 62106069, 62102136
and 62002104; by the National Key Research and Development Program of
China under Grant 2022YFA0911800; by the Key R&D Program of Hubei
Province under Grant GJHZ202500049; by the Open Project Funding of
the Key Laboratory of Intelligent Sensing System and Security, Ministry of
Education under Grant KLISSS202401. (Corresponding author: Yang Yang.)

T. Yu and Y. Yang are with Key Laboratory of Intelligent Sensing
System and Security (Ministry of Education), School of Artificial Intel-
ligence, Hubei University, Wuhan, China. Email: tommyyu21@163.com,
yangyang@hubu.edu.cn.

G. Liu and C. Wang are with Hubei Key Laboratory of Internet of In-
telligence, School of Electronic Information and Communications, Huazhong
University of Science and Technology, Wuhan 430074, China. Email: gaoyan-
gliu2020@gmail.com, chenwang@hust.edu.cn.

Special thanks to Ziyi Zhou and Fudu Xing for their support on this work.

working laptops) are sharing the same network with more
vulnerable non-business devices (e.g., smart TVs, cameras,
coffee machines). This trend encourages Advanced Persistent
Threat (APT), which is a multi-stage, stealthy, and continuous
cyberattack, typically carried out by a highly organized group,
that targets a specific entity with the goal of gaining and
maintaining unauthorized access to systems and data over
an extended period. In APTs, the attacker can first exploit
non-business devices, and use the non-business devices as
attack launch pads to compromise the business devices. In
this process, APTs leverage multiple techniques to circumvent
the current detection mechanisms. First, APTs adopt evasive
techniques such as 0-day, convert channel or low frequency
access [2]. Second, APTs leverages recent advances in LLM-
based exploitation tools, such as hacker-GPT [17] and worm-
GPT [14], to scale up their attack against the edge networks.

Current detection mechanisms includes signature-based de-
tection detection [11], [54], anomaly-based detection [53],
[35], [24] and graph-based detection [44], [40]. Signature-
based detection includes legacy Firewall/IDS/IPS [11], [54].
Anomaly-based detection, such as Kitsune [53], focuses on
anomalies such as abnormal flow statistic. Graph-based de-
tection includes attack graph analysis [44], provenance-based
detection [40], [43], [47], [60], and series of GNN-based de-
tection such as E-GraphSAGE [49] and StrucTemp-GNN [26].

Current detection mechanisms are ill-suited to detect APTs
among millions of edge networks due to three pain points:
• Complex structure: The structure of the edge networks

are complex with the various devices, network flows and
security events. Current signature-based detection [11], [54]
and anomaly-based detection [53], [35], [24], only covers
certain vantage points. Signature-based detection [11], [54]
can be evaded by zero-day exploits or physical covert
channels (e.g., BYOD). Anomaly-based detection [53], [35],
[24] focuses on statistical anomalies and can miss out the
actual APTs path.

• Massive scale: The scale of the devices and network flows
in millions of edge networks makes it hard to perform the
manual labeling task. Current attack graph analysis [55],
[44] requires the labeling of potential vulnerabilities on each
device. The provenance-based detection [40], [43], [60] re-
quires labeling provenance data. GNN-based detection [49],
[26] requires labeling the benign and malicious devices in
the training stage. None of the manual labeling process can
scale to millions of edge networks.

• Diverse topology: The topology and communication pattern
of the edge networks are so diverse that it is hard to

apply one set of detection rules or one trained model and
effectively apply it to all the edge networks. Therefore, it is
hard to generate one attack graph [55], [44], one provenance
graph [40], [43], [60] or one GNN model [49], [26] that is
effective for all edge networks.
In this paper, we aim to address the key question: “Can

recent machine-learning advances effectively tackle the APT
detection pain points in edge networks?”. The series of GNN
models, such as Spectral GNN [28], GCN [46] GAT [65]
and Graph Sage [41], are commonly used to capture graph
structures, which seems to be suitable to capture the edge
networks with the devices abstracted as nodes and network
flows abstracted as edges. However, conventional GNN ar-
chitectures (e.g., GCN, GAT, GraphSAGE) are fundamentally
constrained by their reliance on adjacency matrices [23],
rendering them unable to capture network flow context or
directional relationships. While costly extensions (e.g., those
incorporating Hodge Laplacians) can partially embed edge
information, they remain unsuitable for network flow analysis,
where a single edge often carries multiple flows [67], [58].
This intrinsic limitation prevents effective modeling of the
complex dependencies inherent in flow-based network data.
Additionally, GNNs requires a subset of well-labeled nodes to
be effective (around 5% of the nodes as stated in GCN [46]),
which is hard to obtain in the edge networks. The LLM do not
require manual labels, but faces effectiveness and scalability
issues if the LLM alone is applied for detecting all devices
and network flows [32]. Another thought is to use LLMs to
generate a subset of well-labeled nodes for GNNs, and use
GNNs to perform scalable training and detection. However,
LLMs are trained on generic data and lack the supplementary
security context needed for effective labeling.

To address the above gaps, we propose LLMGRAPH, which
incorporates extended GCN (Graph Convolutional Networks)
and domain-specific RAG (Retrieval-Augmented Generation)
pipeline to perform label-free detection against APTs in edge
networks. LLMGRAPH provide several improvements over
existing GCN and LLM frameworks:

• Flow-supportive GCN: To address the complex structure
issue, LLMGRAPH provides extended GCN with virtual
nodes to fully capture the context of multiple network
flow on the same edge.

• LLM Annotator: To address the massive scale issue,
LLMGRAPH provides the LLM annotator with a RAG
(Retrieval Augmented Generation) pipeline to automati-
cally annotate and select a subset of well-labeled devices
and network flows.

• LLM Aggregator: To address the diverse topology issue,
LLMGRAPH provide a LLM-based aggregator that can
cluster and merge diverse edge networks to scale up the
GCN training.

We evaluate LLMGRAPH using real edge network datasets
(e.g., IoT-23 [39], IoT Sentinel [52], VirusTotal [6] and
Tranco [56]), and compare it to state-of-the-art detection
mechanisms, including signature-based detection [11], [54],
anomaly-based detection [53] and graph-based detection (i.e.,
attack-graph analysis [55], [44], provenance-based detec-

NAS

Camera

Phone

Desktop

NAS

Camera

Phone

Desktop

Log4j

Backdoor

FW

Convert
channel Printer

Server

…

DB

Branch Office

Zero-day

Home 1

Home n

Figure 1: APTs can breach the edge networks.

tion [40], [43], [47], [60] and GNN-based detection [41]).
We demonstrate that LLMGRAPH outperforms existing solu-
tions in terms of effectiveness and scalability. LLMGRAPH
is effective. Compared to signature-based [11], anomaly-
based [53] and graph-based detection (including attack-graph
analysis [55], [44], provenance-based detection [40] and GNN-
based detection [41]), LLMGRAPH increases the F1-Score
by at least 46.9%; LLMGRAPH is scalable. LLMGRAPH’s
extended GCN model’s training time for one network with
35000 devices and services is less than 0.5s. The training
time for 1 million edge networks (each with 240 devices and
services) is under 1000s; LLMGRAPH can handle the diversity
of edge networks. Compared to the one-model-per-network
approach (n-model) and one-model-fit-all approach (1-model),
LLMGRAPH reduces the minimum FNR by 83.3% and FPR
by 61.4%. Also, LLMGRAPH’s components improve the
effectiveness and scalability. Compared with manual labeling,
the LLM-based annotator can improve accuracy by 27.09%.
The extended GCN can increase the F1-Score by 9.4%. The
LLM-based aggregator can increase the F1-Score by 69.9%,
and also reduce the GCN training time by 78%.

II. MOTIVATION

This section begins with a detailed explanation of edge
networks and APTs. We then illustrate the limitations of cur-
rent defenses in securing these networks. Finally, we present
the opportunity offered by GCN and LLM to address these
limitations and protect the edge networks against APTs.

A. Edge networks are increasingly threatened by APTs

Figure 1 illustrates the edge networks of two employee
homes and a branch office. The edge networks are connected
to the business network with remote working supports. Such
remote working supports includes business devices such as
working desktops and laptops, VPNs and edge security routers
such as Cisco Meraki [4], Amazon Eero [3] and Netgear
Orbi [5]. Between the edge networks and the business net-
works, the perimeter defense such as the gateway firewall is
still in place. Such edge networks break the heavily fortified
boundaries between business devices and the non-business
devices. Business devices share the same network with more
vulnerable non-business devices, creating significant security
risks. For instance, Figure 1 shows two APTs attacks. In the

2

Mirai C&C

SambaCry code injection

Time

min

s

Figure 2: The statistic anomalies caused by Mirai C&C
and SambaCry code injection for Kitsune [53].

attack on home 1, the attacker exploited a vulnerable non-
business NAS device via the log4j vulnerability. Then, the
attacker uses the NAS to compromise the smart phone. When
the smart phone was brought into the branch office, this forms
a physical convert channel that further compromises the printer
and the DB in the branch office. Here, the structural context
is that the NAS is normally only accessed by the camera. If
the NAS could be automatically flagged, then such structural
context can help to flag the phone as well. In the attack
on home 2, the attacker exploited a D-Link Camera via a
debug-mode backdoor. Then, the attacker uses the camera to
compromise the desktop. The compromised desktop then use a
zero-day exploit to compromise the server and database in the
branch office. Here, the structural context is that the Camera
is normally only accessed by the phone, not the Desktop.

B. Pain points of APT detection in edge networks

Existing detection approaches, including signature-based
detection [11], [54], anomaly-based detection [53] and
graph-based detection (i.e., attack-graph analysis [55], [44],
provenance-based detection [40], [60] and GNN-based de-
tection [41]) are not adequately equipped to protect edge
networks from APTs because of the following pain points.

Complex structure: The structure of the edge networks
are complex with the various devices, network flows and
security events. Signature-based detection [11], [54] only
covers a single topological point and can be evaded by zero-
day exploits or physical covert channels. For example, the
Firewall FW in Figure 1 is bypassed by a zero-day exploit
on server and a convert channel of a BYOD phone. Anomaly-
based detection [53], [35], [24] focuses on abnormal statistics
and can be evaded by APT attacker’s stealthy strategies such as
low frequency access. For example, Figure 2 presents the result
of the anomaly-based detection called Kitsune [53] on Mirai
C&C and SambaCry. The Mirai C&C causes significant statis-
tical anomalies due to multiple control message exchanges in
the C&C channel. In contrast, SambaCry code injection (with
low frequency SMB commands) is stealthy and does not cause
significant anomalies.

Table I: Prompt used for labeling log4j flows.

Input: Given the context that:
”Log4j vulnerability was reported to apache by Chen Zhaojun
of the Alibaba cloud security team on 24th November 2021
and published in a tweet on 9th December 2021. Apache soft-
ware foundation assigned a maximum severity score of 10/10.
The vulnerability allows attackers to remote code execution and
the payload string looks like jndi:ldap://attacker.com/a. Lots of
organization-affected services include Cloudfare, apple iCloud,
Minecraft: java edition, stream, Tencent QQ, and Twitter”
There are three categories:
[benign, malicious, suspicious]
What is the category of the following network flows?
Flow 1: 172.16.141.131,,172.16.141.132,
/,jndi:ldap://172.16.141.131:1389/yeicai
Provide your 3 best guesses and a confidence number (0 to 100).
Ouput: Let’s analyze the network flows based on the context.
Flow 1: The payload contains the string jndi:ldap://, which is
indicative of a malicious intent. LDAP (Lightweight Directory
Access Protocol) is commonly used for directory services, but in
this context, it could be exploited for remote code execution.
Category: Malicious, Confidence: 90

Massive scale: The scale of the devices and network flows
in millions of edge networks makes it hard to perform the man-
ual labeling task. Current graph-based detection mechanisms,
including attack-graph analysis [55], [44], provenance-based
detection [40], [60] and GNN-based detection [41], require
manual labeling to be effective. For example, in Figure 1,
attack-graph analysis [55], [44] requires the admin to label
each device’s vulnerabilities (e.g., Camera’s Backdoor). The
provenance-based detection [40], [60] requires the admin to
label each device’s logs to construct the provenance graph.
GNN-based detection [41] requires manually labeling (e.g.,
compromised NAS) for model training.

Diverse topology: The topology and communication pattern
of the edge networks are so diverse that it is hard to apply
one set of detection rules or one trained model and effectively
apply it to all the edge networks. For example, in Figure 1, it is
hard to generate one attack graph [55], [44], one provenance
graph [40], [43], [60] or one GNN model [49], [26] that is
effective for thousands of different employee home networks.

C. Opportunity: GCN and LLM

Recent advances in GCN and LLM offers great opportunity
to address the above issues. The intuition is to use GCN to
capture the structural context, and use LLM to automatically
generate a subset of well-labeled nodes for GCN training.
GCN: The spectrum of Graph Neural Networks, such as
Spectral GNN [28], GCN [46] GAT [65] and Graph Sage [41],
can capture structural context. Compared to GCN, other graph-
based machine learning mechanisms [27], [65], [41], [46] are
either less efficient or less practical. For instance, Spectral
GNN [27] is not localized, meaning that the feature represen-
tation of one node can be influenced by all other nodes in the
graph, which is inefficient as the training iteration evolves all
all other nodes, and is impractical as the APT attacker can
exploit such influence. Graph Attention Networks (GAT) [65]
are not as efficient because each node needs to compute its
neighbors’ aggregation coefficients. Graph Sage [41] is not
practical as it requires sampling and aggregation based on

3

numeric data, potentially missing key security contexts that
are non-numeric. We opted for GCN [65] because it is both
efficient and practical. It has constant neighbor coefficients and
does not require sampling or numeric aggregation.
LLM: Recent advances in LLMs have showcased impressive
zero-shot capabilities. This means that such LLMs has the
potential to annotate on devices and network flows with
labels and remove the requirement for manual labeling [32].
Such LLMs can be used to automatically generate labels
for GCN, which requires adequate high-quality labels. To
demonstrate LLM’s annotation potential in security detection,
we use Llama-7B model to label the network flow of Log4j
attack [13], as shown in Table I. In this experiment, we
ask the LLM model to annotate the log4j network flow into
three categories - benign, malicious and suspicious. Note that
vulnerability information of Log4j is also given for effective
annotation. In the output part, we can see that the LLM model
accurately label the log4j network flow as malicious. The LLM
model even provide an reasonable analysis for the log4j flow’s
payload and pointed out it could be exploited for remote code
execution. This demonstrates LLM’s potential for effective
device and network flow annotation.
Potential LLM-GCN-based APT detection: A key observa-
tion is that - APTs are inherently multi-stage attacks where
concealing all stages via zero-day exploits or covert channels
is extremely difficult (especially considering that a zero-day
exploit on a specific device would take months to uncover).
The LLM can be used to annotate some APT stages and
devices with known exploits or existing security anomalies,
which is label-free - no manual label is required. GCNs then
correlate these LLM-generated annotations across different
attack stages and propagate the identified suspicion along
potential full APT paths. For instance, in Figure 1, the first
APT (upper red path) has the LLM annotate the known Log4j
exploit and the anomalous NAS access to a BYOD phone; the
GCN correlates these and propagates suspicion to the covert
channel of the BYOD phone. Similarly, for the second APT
(lower red path), the LLM flags the anomalous camera access
to the desktop, and the GCN propagates this suspicion to the
desktop’s later zero-day exploit against the server.

III. OVERVIEW

In this section, we present an overview of LLMGRAPH,
which combines LLM and GCN to identify compromised de-
vices and malicious network flows of APTs in edge networks.
Threat model: In this part, we define the threat model:

1) The attacker can launch APT attacks against edge
networks with evasive techniques including 0-day exploits,
physical covert channels and low frequency accesses.

2) The defense system, including the host-based detection
systems and edge security gateways, is able to monitor the
host logs and network flows.

3) For encrypted network traffic, the defense system cannot
inspect the content, but can analyze the metadata (e.g., source,
destination, traffic volume, etc.).

4) The attacker cannot compromise the detection itself.
Our intuition: In Section II, we can see that GCN can be used
to capture the structural context in edge networks. However,

Table II: Generic LLM (GPT-4o 2025-06-25) lacks context
and cannot label Cisco-IOS-backdoor flow as malicious.

Input: There are three categories:
[benign, malicious, suspicious]
What is the category of the following network flows?
Flow 1: 192.168.1.3,,192.168.1.4, /,/level/16/exec/
Ouput: This flow should be categorized as suspicious, as the
endpoint /level/16/exec/ suggests a potentially risky action (exe-
cuting commands at a high access level), but additional context
or evidence of exploitation is needed to confirm it’s malicious.
It could be part of a legitimate system, but it’s definitely worth
investigating further.

GCN requires a subset of nodes with high-quality labels to be
effective. Meanwhile, LLM has the potential to automatically
label the devices and network flows in edge networks. But
LLM cannot be trained or directly applied to utilize the graph
structural context and perform detection on edge networks
effectively and efficiently. Therefore, our idea is to integrate
GCN and LLM, leveraging the GCN to capture the graph
structural context, and leveraging the LLM to automatically
label the devices and network flows for GCN training.

Basic LLMGRAPH workflow: Figure 3 shows the basic
LLMGRAPH workflow. In LLMGRAPH, the edge networks
are represented in the form of Text-Attributed Graph (TAG)
as GT = (V,A, T,X, Y). V = {v1, v2, ..., vn} is the set of n
nodes paired with text attributes T = {t1, t2, ..., tn}. The ad-
jacency matrix A ∈ {0, 1}n×n represents graph connectivity.
The feature matrix X = {x1, x2, ..., xn} describes the encoded
feature for the nodes V and corresponding text attributes T .
The label matrix Y = {y1, y2, ..., yn} represents the labels
(i.e., benign, malicious, suspicious) for the nodes V .

As the first step of the workflow, LLMGRAPH’s LLM
Annotator will perform labeling on nodes V (i.e., devices
and network flows). In this process, the LLM Annotator
will convert the text attributes T into feature matrix X , and
automatically generate the label matrix Ytrain. After that,
LLMGRAPH provides a LLM-based Aggregator to process
different edge networks. Finally, the edge networks and their
devices and network flows will be processed by the GCN
module. The GCN module will perform a graph spectral
convolution Z = f(X,A) to encode the graph input into
signals in Fourier space [46], [33], [28]. Then, the input signal
will transverse through multiple hidden layers with activation
functions (e.g., ReLU) and a softmax function. In the training
stage, GCN will generate the parameters W of the above GCN
structure based on the label matrix Ytrain. In the prediction
stage, GCN will use the trained parameters W to make the
prediction Ypred on nodes Vpred with feature Xpred expected
to be predicted (i.e., benign, malicious, suspicious).

However, there are three key challenges to make the above
LLMGRAPH workflow practical for edge networks:

Challenge 1: Generic LLM lacks labeling effectiveness.
GCN needs a subset of well-labeled nodes to be effective [46].
However, generic LLM lacks the labeling effectiveness to
provide such subset of well-labeled nodes. First, current LLM
models, such as ChatGPT [8], MS copilot [9], Llama [64],
Vicuna [12] or Red Pajama [10], are trained on generic dataset
and lacks the domain-specific security data (e.g., CVE infor-

4

LLM Annotator

Generic LLM

Domain-specific
RAG

Confidence-aware
Node Selection Subset of

Well-labeled
nodes

Devices
Flows LLM Aggregator

Graph
Augmentation

Graph
Merging Aggregated

graphs

Challenge 1: Generic LLM lacks labeling effectiveness

Challenge 3: Diversity of edge networks

conv ReLU

softmax

LLMGraph
Abstraction

Output

Extended GCN

Challenge 2: Limited Expressiveness of GCN

Figure 3: LLMGRAPH workflow.

mation) to provide accurate labels. For example, in Table II,
the generic LLM (GPT-4o 2025-06-25-version) lacks context
data (e.g., vulnerability description) and cannot label Cisco-
IOS-backdoor flow as malicious. Another issue is that the
generic LLM is not capable of selecting the subset of well-
labeled nodes for GCN.

Challenge 2: Limited expressiveness of GCN. In the
context of APTs in edge networks, existing learning models
have limitations in representing key domain-specific concepts
such as network flows and protocol fields. For instance,
graphic learning models [46], [33], [28] rely on an adjacency
matrix that only records connectivity and does not capture the
detailed context of network flows (e.g., firmware update URI).

Challenge 3: Insufficient data and various networks.
Edge networks exhibit a high degree of diversity, with each
network having a unique set of devices and communication
patterns. It is challenging to apply a one-size-fits-all model
that adequately covers all edge networks. Alternatively, if each
edge network trains its own model, the data available within
each edge network is often insufficient for model training. For
instance, there are new or infrequently used devices that have
limited communication records.

In the following part, we will discuss LLMGRAPH’s design
and how LLMGRAPH addresses the above challenges. In
Section IV, we will demonstrate how LLMGRAPH’s annotator
employs a domain-specific RAG pipeline and a confidence-
aware node selection mechanism to address the lack of labeling
effectiveness issue. In Section V, we will provide an extended
GCN pipeline with virtualized nodes to address basic GCN’s
limited expressiveness issue. In Section VI, we will provide a
LLM-based aggregator with graph augmentation and cluster-
ing to scale up the GCN detection on diverse edge networks
with massive scale. In Section VIII, we will provide the evalu-
ation of LLMGRAPH in terms of effectiveness and scalability.
We will walk through the related work in Section IX and
discuss other issues in Section X.

IV. LLM ANNOTATOR

GCN requires a small subset of well-labeled nodes (i.e.,
around 5% of the nodes) to be effective [46], [32]. To
fulfill this requirement, LLMGRAPH provide a LLM-based
Annotator to first label all the nodes into three categories -
benign, malicious and suspicious, and then select a subset of
well-labeled nodes for GCN training. However, this is not a
easy task and there are two key issues: 1) Lack of domain-
specific data - current LLM models [9], [8], [64], [12], [10]

1

Vulnerability
Description

Host Logs
Network Logs

Proposition
Chunking

CMD & Flow
Chunking

Log Header

VD Content

Log Header

VD Content
embedding

Vector
storesCascade

Retriever

Generic
LLM

GCN(V,A) V(Label, Confidence)

f = fLLM+fCluster

A subset of
Well-labeled nodes

Domain-specific RAG pipeline

Confidence-aware
node selection mechanism

Hybrid node selection

Context-based
Generator

Figure 4: The workflow of the LLM Annotator.

are trained on generic dataset and lack the domain-specific
data needed to effectively label the devices and network flows,
as shown in Table II; 2) Require proper node selection - the
effectiveness of GCNs relies on a small subset of well-labeled
nodes [46]. While we can use LLM to label all nodes, selecting
an appropriate portion of well-labeled nodes remains critical.
To address these issues, the LLM Annotator’s workflow is as
shown in Figure 4. There are two parts - the domain-specific
RAG pipeline and the confidence-aware node selection.

A. Domain-specific RAG pipeline

To address lack of domain-specific data issue, the LLM
Annotator provides a RAG (Retrieval-Augmented Generation)
pipeline to indexing and retrieve relevant security and network
data (e.g., CVE), as shown in Figure 4. RAG is an emerging
technique that enhances the capabilities of LLM by plugging
in other data sources, in addition to the knowledge that LLM
itself has learned. RAG’s workflow includes two key steps - in-
dexing and retrieval. The indexing step is crucial for obtaining
accurate and context-aware answers. It begins with extracting
and cleaning data from various file formats. The cleaned text
is then split into smaller chunks to avoid context limitations
within LLMs. Each chunk is transformed into a numeric vector
via embedding, and an index is built to store these chunks
and their corresponding embeddings. In the retrieval step, the
query is converted into a vector representation using the same
embedding. Similarity scores between the query vector and
the vectorized chunks are calculated, and the system retrieves
the top K chunks most similar to the query.

5

RAG systems face two key challenges in these steps - 1)
indexing effectiveness; 2) retrieval efficiency. Generic indexing
divide text into meaningful segments via fixed size chunking.
However, in LLMGRAPH’s case, the effectiveness of such
generic indexing is limited. This is because the vulnerability
description and the host & network logs are not suitable for
fixed size chunking. Then, in the retrieval process, query is
converted into a vector representation and similarity scores
between the query vector and vectorized chunks are calcu-
lated. However, given the massive scale of the vulnerability
descriptions and the host & network logs, the size of the
vectorized chunks are huge and the retrieval efficiency is
greatly limited. To address the indexing effectiveness issue,
LLMGRAPH’s LLM annotator provides the hybrid chunking.
To address the retrieval efficiency issue, LLMGRAPH’s LLM
annotator provides the cascade retriever.

Hybrid chunking: To improve the indexing effectiveness,
LLMGRAPH’s LLM annotator adopts the hybrid chunking
to customize and synthesize the chunking of different inputs
including the vulnerability description and the host & network
logs. More specifically, for vulnerability description, the LLM
annotator adopts the proposition chunking [31]. Propositions
are atomic expressions within text, each encapsulating a
distinct factoid and presented in a concise, self-contained
natural language format. The three principles below define
propositions as atomic expressions of meanings in text. Each
proposition should represent a distinct piece of meaning in the
text, collectively embodying the semantics of the entire text.
A proposition must be minimal and cannot be further divided
into separate propositions. A proposition should contextualize
itself and be self-contained, encompassing all the necessary
context from the text to interpret its meaning. Then, for
host & network logs, LLMGRAPH’s LLM annotator adopts
semantic chunking based on command and network flows.
After that, LLMGRAPH’s LLM annotator will synthesize the
vulnerability description chunks and the host & network logs
chunks together. In the synthesize stage, the host & network
logs chunks will be used as the header and the vulnerability
description chunks will be used as the content.

Cascade retriever: To enhance retrieval efficiency, the
LLM annotator employs a cascade retriever. The core con-
cept involves leveraging host and network log headers as a
fast matching structure. The historical host and network log
headers are shorter than the vulnerability description, and is
more likely to match the current host and network log part
in the current query. When a new query Q with host and
network logs arrives, the cascade retriever will calculate the
min cosine distance di and max cosine distance dj between
the query Q and the chunk headers CH . If the ratio di/dj is
greater than threshold T (0.01 unless other specified), then all
the host and network log header matches yield low scores, and
the query Q will continue to match the content of the chunks
CN , which are the vulnerability descriptions. After that, the
prompt P will be constructed by combining the query Q with
the best matched chunk with index i. Additionally, the chunks
are reranked using a Least Recently Used (LRU) mechanism
to improve future matches.

Algorithm 1 Confidence-aware node selection
Require: Edge networks G(V,E), Devices V with labels LV , Flows

E with labels LE

Ensure: Devices V s with labels Ls
V , Flows Es with labels Ls

E

1: ncluster ← 3
2: C ← KMeans(ncluster, V, LV)
3: for all v, v ∈ V do
4: fllm(v)← LLM(v)
5: fcluster(v)← d(v, cv)
6: f(v) = c0fllm(v) + c1fcluster(v)
7: end for
8: (V s, Ls

V)← Rank(V, f(V))

B. Confidence-aware node selection

To address the require proper node selection issue, the
LLM Annotator provides a confidence-aware annotation to
select a subset of well-labeled nodes for GCN training. The
confidence-aware node selection mechanism combines two
factors: 1) the confidence score from LLM, and 2) the distance
between the labeled node and the cluster center.

To calculate the confidence score from LLM, LLMGRAPH
employs the template shown in Table I in Section II. In the
labeling process, each device or network flow is treated as a
node in GCN. The nodes are classified into three categories:
benign, malicious, and suspicious. Each node receives a confi-
dence number from 0 to 100. For example, the log4j flow with
“jndi” information is labeled as malicious with a confidence
score of 90, as shown in Table I.

To calculate the distance between the labeled node and
the cluster center, LLMGRAPH needs to identify the cluster
center. However, calculating the distance between labeled
nodes and the cluster center is challenging in unweighted
and non-localized GCN graphs. To address this, we use the
clustering coefficient of the unweighted graph to identify the
center. For an unweighted graph, the clustering coefficient of
a node u is defined as:

fcluster(u) =
2T (u)

deg(u)(deg(u)− 1)
(1)

where T (u) is the number of triangles through node u, and
deg(u) is the degree (number of neighbors) of node u.

Finally, we combine these two factors together to realize
the confidence-aware node selection:

f = c0fllm + c1fcluster (2)

where fllm is the LLM confidence score and fcluster is the
cluster confidence score, c0 and c1 are balancing coefficients1.

V. EXTENDED GCN

Creating an expressive learning model for network security
contexts presents a significant challenge. In this section, we
will walk through the extended GCN, and demonstrate how
we can tackle this challenge.

1Set to 0.5 unless specified otherwise.

6

Aria

104.16.66.50

D-LinkHomeHub

wrpd.dlink.com

10.10.10.3010.10.10.87

tzinfo.dch.dlink.com

api.dch.dlink.com

s3-us-west-2.amazonaws.com

D-LinkWaterSensor

WeMoInsightSwitch

239.255.255.250LGphone

10.10.10.37

D-LinkCam

D-LinkSensor

EdimaxCam1

10.10.10.6

Withings

scalews.withings.net

D-LinkDayCam

D-LinkSiren

EdimaxCam2

D-LinkSwitch

pornhub.com

FreeNAS

Figure 5: LLMGRAPH’s abstraction for a home network.
A. Communication graph abstraction

Benign and malicious communications within edge net-
works occur across various devices and services, and under
diverse contexts. Therefore, it’s crucial to have a succinct
abstraction that can extract the key information from these
communications. In LLMGRAPH, we introduce a commu-
nication graph abstraction designed to capture the essential
information of benign and malicious communications. In
LLMGRAPH’s abstraction G(V,E), each node v ∈ V is either
an internal device d or an external service s. Internal devices
are devices within the gateway of the edge networks, and
external services are services on the internet. LLMGRAPH
distinguishes internal devices (e.g., camera) and external ser-
vices (e.g., website or IP address), because internal devices
are part of the edge networks, are more critical and more
manageable for the security admins. Each internal device d
is composed of its MAC address dmac, IP address dip, device
type dtype, device vendor dvendor and device model dmodel
2. Each external service s is composed of its IP address sip,
domain name sdomain, url surl. Each edge e ∈ E is a group
of network flows between two nodes. Each edge e includes the
source-destination pair (esrc, edst). Each edge e also includes
a list of edge contexts (e.g., protocol type) or protocol-specific
information (e.g., URI field).

Figure 5 shows an example of LLMGRAPH’s abstraction
for a smart home network [52]. Each node is a device
(Switch/Sensor/Water-sensor/Hub/Siren) or a external service
(e.g., api.dlink.com). Each edge is a group of communication
flows (the edge context is omitted for simplicity). For benign
communication, LLMGRAPH’s abstraction clearly shows that
there is no direct communication between the devices. The
devices only communicate with the external services, which
matches the typical edge-to-cloud communication pattern for
a wide range of devices.

The LLMGRAPH’s abstraction can detect malicious com-
munication patterns. As shown in Figure 5, the malicious com-
munications implemented a chain of intrusion and ransomware
attack against the home network. In this attack, the attacker
first uses an Exploit-Toolkit (EK) to exploit the D-Link Siren.
Then, the attacker uses the D-Link Siren as a stepping stone
and send SMB commands to a Synology NAS to exploit
the Samba protocol vulnerability and performs a SambaCry
attack [1]. The LLMGRAPH’s abstraction clearly shows the
malicious pattern that: 1) the D-Link Siren is communicating

2The internal device in this paper is composed of these five-tuples. The
device definition can be extended to include other device attributes, e.g., device
hostname.

with an external service from adult website pornhub.com; 2)
the D-Link Siren is communicating with the Synology NAS.
If we can learn the communication patterns, then it can be
used to detect the chain of APT attacks.

B. Construct LLMGRAPH abstraction

Algorithm 1 shows the process of building LLMGRAPH’s
abstraction G(V,E). The inputs are the host information Ihost
and the network traffic Tall. A device list D can be derived
from the host information Ihost gathered at the edge router
(e.g., dhcp information). For each device d, the 5-tuples
{dmac, dip, dtype, dvendor, dmodel} can be derived from host
information Ihost and the network traffic Tall. A service list
S can be derived from the DNS part of the network traffic
Tdns ∈ Tall, as connecting to a service involves the DNS
resolution of the service’s domain. For each service s, the 3-
tuples {sip, sdomain, surl} can be derived from the network
traffic Tall, and surl can be used as the service id since the
IP address may change over time. The vertices list V is an
union of internal devices D and external services S, noted
as D ∪ S. To build the edge list E, LLMGRAPH identifies
all the flows L in the network traffic Tall. For each flow
l ∈ L, we can extract the source lsrc, destination ldst, protocol
type lproto and context lcontext (such as http uri or http XSS
option). The flows can be grouped by their source-destination
pair (lsrc, ldst) and generate an edge e ∈ E. Given V and E,
the LLMGRAPH abstraction G(V,E) is constructed.

C. GCN workflow

Based on GCN’s data schema, LLMGRAPH’s communi-
cation graph inputs can be formalized as feature matrix X ,
adjacency matrix A and label matrix Y . The feature matrix
X ∈ RN×C is composed of C feature values for N nodes.
The adjacency matrix A ∈ RN×N contains all the edges of
the graph. The label matrix Y includes the class labels of each
node, and it allows empty value for nodes without label. To
encode the graphic input of both feature matrix X and adja-
cency matrix A, GCN leverages a technique called spectral
graph convolutions. The basic idea is to calculate the spectral
convolutions of graphs defined as the multiplication of the
feature matrix X with a filter encoding the adjacency matrix
A in the Fourier domain [46], [28], [33]. The convolved signal
matrix is Z = f(X,A) where f is the filter function with
parameter Θ in Fourier domain. More specifically, formula
Z = f(X,A) can be expanded as:

Z = D̃− 1
2 ÃD̃− 1

2XΘ

Here, Ã = A+IN is the adjacency matrix of the undirected
graph G with added self-connections. IN is the identity matrix,
and D̃ii = ΣjÃij . Θ ∈ RC×F is a matrix of filter parameters,
where C is the dimension of feature vector for every node,
and F is the number of fourier filters.

After spectral graph convolutions, the input feature matrix
X and adjacency matrix A are mapped to a hidden layer. Then,
GCN [46] propagates the input (or called activation) through
multiple hidden layers, including typical ReLU function and

7

v1

v2

v1

v2

ea

sa

src:v1, dst:v2,

context: ea

v1

v2

v1

v2

ea1
v1

v2

v1

v2

ea

sa

sb

eb

ea2

sa1

sa2

src:v1, dst:v2,

context: ea2

src:v1, dst:v2,

context: ea1

src:v1, dst:v2,

context: ea

src:v2, dst:v1,

context: eb

Figure 6: Extending GCN expressiveness.
softmax function to generate the final output. In the training
stage, the final output will be compared with the label matrix Y
to train the parameters in the convolution Z, ReLU function,
softmax function and each hidden layer. Then, in the real-
time detection stage, the finally output will be used to predict
the class of the node (e.g., whether a device is benign or
malicious). For example, for a two-layer GCN, LLMGRAPH
will first calculate A = D̃− 1

2 ÃD̃− 1
2 in a pre-processing step.

Then, the forward model is as follows:

Z = f(X,A) = softmax
(
ÃReLU

(
ÃXW (0)

))
W (1)

Here W (0) is an input-to-hidden weight matrix and W (1)

is a hidden-to-output weight matrix. Then, when training the
weight matrix W (0) and W (1), the loss function is defined as
the cross-entropy error as follows:

ℓ = −
∑
l∈yL

F∑
f=1

Ylf lnZlf

where yL is the set of node indices that have labels. With
the above loss function, the weight matrix W (0) and W (1) are
then trained via gradient decent.

D. Extending GCN Expressiveness

We’ve outlined the basic workflow of GCN above. However,
the standard GCN has three significant limitations that hinder
its detection capabilities. Firstly, GCN does not support multi-
ple edges between two nodes. The adjacency matrix of GCN
only records whether two nodes are connected or not, and
as a result, it cannot express multiple network flows between
two nodes or identify specific malicious flows. Secondly, GCN
does not support edge context. Edge context is vital as it
captures the content of communications [36], [45], [63], [42],
[29]. For instance, an HTTP connection with an ‘upgrade’
string in the edge context could indicate a firmware update
operation, which often signifies code injection attacks. Lastly,
GCN does not support edge direction. The direction of an
edge is crucial as it captures the direction of communication,
especially in the case of multi-stage intrusions.

To address these three issues, LLMGRAPH extends GCN’s
expressiveness to be able to capture multiple edges between
two nodes, edge context and edge direction. The key idea is
to generate virtual nodes to represent the edges, and connect
them with the edge’s original source/destination nodes, as
shown in Figure 6. To support multiple edges between two

Algorithm 2 LLMGRAPH’s Augmentation Mechanism

Require: LLMGRAPH abstraction G(V,E)
Ensure: LLMGRAPH abstraction GAug(VAug, EAug)

1: def sweep(V,E, Vsub, layer)
2: for all v, v ∈ Vsub do
3: Vsub ← Vsub + neighbors(V,E, v)
4: end for
5: layer ← layer + 1
6: if layer > MAXHOPS then
7: return Vsub

8: end if
9: return sweep(V,E, Vsub, layer)

10:
11: V fuzz ← V
12: Efuzz ← E
13: Device attribute trV ← Attribute(V)
14: for all va, va ∈ V do
15: {vfuzza } ← LLMFuzz(trV , va)
16: for all e, e ∈ E do
17: vb ← neighbor(e, va)
18: efuzz ← edge(vfuzza , vb, contexte)
19: end for
20: V fuzz ← V + {vfuzza }
21: Efuzz ← E + {efuzz}
22: end for
23: Vsub ← sweep(V,E, Vmalicious, layer)
24: Esub ← {e, ea ∈ Vsub, eb ∈ Vsub}
25: VAug ← Vfuzz + Vsub

26: EAug ← Efuzz + Esub

27: return GAug(VAug, EAug)

nodes, LLMGRAPH can create a virtual node for each edge.
To support edge context, LLMGRAPH assign the edge context
as the virtual nodes’s attributes. To support edge direction,
LLMGRAPH can convert the direction as part of the virtual
nodes’s attributes. For example, in Figure 6, to represent edge
ea, virtual node sa is created. To represent the edge context
and direction, sa is connected with v1 and v2, and sa’s node
attribute will include context : ea, src : v1 and dst : v2.
After the extension, LLMGRAPH can capture the network
flow characteristics in the training stage, and can identify if
one or a group of network flow is benign or malicious in the
detection stage. To support multiple edges, for each edge e, we
create a virtual node vs and connect it with the edge’s original
source esrc and destination edst. To support edge context and
direction, the shadow node vs includes econtext, esrc and edst
to its attributes. We add es1 and es2 to the edge list E, and
remove the original edge e.

VI. LLM-BASED AGGREGATOR

The extended GCN discussed in Section V is capable of
detecting devices and network flows. However, practically
applying this extended GCN to diverse edge networks remains
challenging. The diversity across these networks gives rise to
two main issues: 1) insufficient data - each network lacks
sufficient data to train its own GCN model; 2) variance be-
tween networks - the differences between edge networks make
it difficult to create an effective one-size-fits-all model. In
this section, we address the diversity challenge by introducing
LLMGRAPH ’s LLM-based aggregator.

8

Table III: LLM-based Fuzzing.

Input: Given device type “NAS” with vendor “Synology”, list
out all possible combinations of device, vendor, model.
Ouput: Here are combinations based on Synology NAS.
Device: NAS, Vendor: Synology, Model: DS224+
Device: NAS, Vendor: Synology, Model: DS923+
Device: NAS, Vendor: Synology, Model: DS3622xs+
Device: NAS, Vendor: Synology, Model: DS223j
Device: NAS, Vendor: Synology, Model: DS420j
Device: NAS, Vendor: Synology, Model: DS920+
Device: NAS, Vendor: Synology, Model: DS1621+
Device: NAS, Vendor: Synology, Model: DS1821+
Device: NAS, Vendor: Synology, Model: DS1621xs+

A. Handling Insufficient Data

Machine learning models typically require a substantial
amount of data for training. However, edge networks face
limitations in data availability. For example, suppose the GCN
model for a home network is trained using data from a
SambaCry attack against a Synology NAS device. A new
device such as FreeNAS (different from Synology NAS) lacks
sufficient historical data to flag similar SambaCry attack. To
address the insufficient data issue, LLMGRAPH ’s LLM-based
aggregator introduces two mechanisms. The first mechanism is
the domain-specific data augmentation to manifest more edge
network data for creating additional training examples. The
second mechanism is merging edge networks to combine their
GCN models and facilitate knowledge sharing.

LLM-based domain-specific data augmentation: Data
augmentation is a common technique used to address the insuf-
ficient data issue. However, traditional augmentation methods
are primarily designed for image or natural language data.
Two common techniques are rotation and cropping. In image
data, rotation involves varying the angle of the original image
to capture different perspectives, while cropping focuses on
extracting local patterns from sub-images. Obviously, rotation
and cropping are specific to image data, and cannot be directly
applied to devices and network flows.

To bridge this gap, LLMGRAPH introduces two LLM-
based domain-specific data augmentation mechanisms, as
shown in Algorithm 2. The first mechanism is device-type-
based fuzzing, which generates various combinations of de-
vices. This concept is analogous to the rotation technique.
While image rotation creates images at different angles,
LLMGRAPH ’s device-type-based fuzzing technique generates
communication graphs with varying combinations of devices,
vendors and models. In the fuzzing process, LLMGRAPH
collects device information from multiple edge networks,
focusing on device type, vendor, and model. It organizes this
data into a tree structure. For each device in the communica-
tion graph G(V,E), LLMGRAPH identifies the corresponding
branch. It then fixes the device’s type and performs the
LLM-based fuzzing on the vendors and models. For example,
in Table III, given the device type “NAS” and the vendor
“Synology”, the LLM-based fuzzing is able to generate model
data such as “DS224” that manifest the training examples that
potentially covers new devices. The underlying intuition of
the device-type-based fuzzing is that devices of the same type
often exhibit similar functionality and benign communication

Algorithm 3 LLMGRAPH Network Clustering

Require: LLMGRAPH abstractions for multiple homes {Gm}
Ensure: A number of network clusters {Cn}

1: def LLMDistance(f1, f2)
2: f1 ← LLMTemplate(f1)
3: f2 ← LLMTemplate(f2)
4: d← LLMDistanceScore(f1, f2)
5: return d
6: {Pm} ← NodeAttribute({Gm})
7: Cluster number m← Elbow({Pm}, LLMDistance)
8: function df ← LLMDistance
9: {Cn} ← HierarchicalClustering({Gm}, {Pm},m, df)

Table IV: LLM-based Distance Score.

Input: Calculate a distance score in (0, 1) between home A and
home B based on the devices and flows.
Home A - Devices: [NAS, Camera, Laptop, Phone], Flows: [
NAS-Camera, Camera-Phone], Attributes: [D-Link Camera]
Home B - Devices: [NAS, Camera, Desktop, Phone], Flows: [
NAS-Desktop], Attributes: [D-Link Camera]
Ouput:
Let’s calculate the distance score.
DeviceOverlapScore = CommonDevices

TotalDevices
= 0.75

FlowOverlapScore = CommonFlows
TotalF lows

= 0.33
DeviceAttributeScore = 1
Combine the scores:
OverallDistanceScore = 0.5∗0.75+0.3∗0.33+0.2∗1 = 0.67

patterns. In contrast, the APT attack would deviate from these
benign patterns for exploitation purpose.

The second mechanism is a graph segmentation mechanism,
which is similar to the cropping mechanism. LLMGRAPH ’s
graph segmentation generates sub-graphs that focus “attention”
on malicious nodes and their neighbors. Essentially, LLM-
GRAPH ’s graph segmentation will generate a sub-graph that
includes the malicious nodes and their r-hop neighbors3. This
helps the GCN capture the boundary pattern between mali-
cious and benign nodes. Algorithm 2 outlines the workflow of
the data augmentation mechanism. The fuzzing process utilizes
the device-attribute-tree structure, and the graph segmentation
mechanism employs an iterative sweeping mechanism to seg-
ment the malicious nodes.

Merging edge networks: Merging edge networks is another
strategy to tackle the insufficient data problem. It is straight
forward to merge LLMGRAPH’s communication graph ab-
stractions defined in Section V to enable knowledge sharing.
However, due to the diversity of edge networks, creating a
one-size-fits-all model is challenging. We will delve into this
issue further in the following part.

B. Handling Variance between Networks

LLMGRAPH clustering various edge networks into distinct
groups and developing a dedicated LLMGRAPH model for
each cluster, as shown in Algorithm 3. The underlying
rationale is that networks with similar devices and services
are likely to exhibit comparable communication patterns. To
achieve this, we vectorize the node and edge attributes of
networks and perform clustering based on these attributes. The
choice of clustering method depends on whether the number

3In this paper, r are set to 3 unless specified otherwise

9

Figure 7: Dendrogram of the LLM-based clustering dis-
tance for six example home networks.

Figure 8: Distortion score elbow of LLM-based clustering.

of clusters is predetermined. K-means is typically used when
the number of clusters is fixed, while hierarchical clustering
is preferred otherwise. In this case, we employ hierarchical
clustering (Line 13) due to the unfixed number of clusters
and the structural data of the node/edge attributes. A crucial
aspect of this process is defining the distance between different
clusters based on the node/edge attributes (Line 1). Since node
and edge attributes are various (e.g., numeric, enumerated or
string values), LLMGRAPH adopts a LLM-based similarity
score as the distance metrics, as shown in Table IV.

Figure 7 illustrates the clustering result of six example home
networks in a dendrogram format. The x-axis represents the
network ID, while the y-axis indicates the distance between
clusters based on the LLM-based clustering distance. As seen
in Figure 7, networks can be grouped into two or three clusters.
To determine the optimal number of clusters, we utilize the
Elbow method [62]. This method calculates variance as a
function of cluster numbers and selects the elbow point on
the curve as the optimal cluster number. Figure 8 displays the
elbow curve for six example home networks. The variance
decreases sharply before the cluster number increases to three,
indicating that three is the elbow point and thus, the optimal
number of clusters.

VII. IMPLEMENTATION

We implemented LLMGRAPH with 5K LoC on a desktop
server equipped with an NVIDIA RTX 4090 GPU (24GB
VRAM), Intel Platinum 8352 CPU (36 cores), 32GB
RAM, and 16TB HDD.

LLM: The LLM annotator and the LLM aggregator are
implemented using Llama-3-8B [19] and deployed using
Ollama [20].

RAG: The RAG is implemented using LangChain [18]
(chunk size = 500 and chunk overlap = 10). The vector
store is using FAISS [15]. The embedding model is using
Llama-3-8B.

GCN: The extended GCN module is implemented based on
the GCN [46].

VIII. EVALUATION

In this section, we evaluate LLMGRAPH and show that:
1) LLMGRAPH is effective. Compared to signature-based [11],
anomaly-based [53] and graph-based detection (including
attack-graph analysis [55], [44], provenance-based detec-
tion [40] and GNN-based detection [41]), LLMGRAPH in-
creases the F1-Score by at least 46.9%;
2) LLMGRAPH is scalable. LLMGRAPH’s extended GCN
model’s training time for one network with 35000 devices and
services is less than 0.5s. The training time for 1 million edge
networks is under 1000s;
3) LLMGRAPH can handle diverse edge networks. Compared
to one-model-per-network and one-model-fit-all approach,
LLMGRAPH reduces FNR by 83.3% and FPR by 61.4%.
4) LLMGRAPH’s components enhance effectiveness and scal-
ability. The LLM-based annotator improves labeling accuracy
by 27.09%. The extended GCN increases the F1-Score by
9.4%. The LLM-based aggregator increases the F1-Score by
69.9% and reduces GCN training time by 78%.

A. Experiment Setup

Testbed: Evaluating edge networks poses challenges due
to their massive scale and practical security, privacy, and
usability concerns. To address this, we set up a testbed that
emulates different edge networks by combining physical and
virtual networks. The testbed includes multiple edge networks
and a Security Operations Center (SoC), as depicted in our
supplementary materials. In each edge network, we deploy
an edge security gateway (a Raspberry Pi 4B running Snort
2.9.8.0). The attack launchpad, physical devices, and virtual-
ized devices are wirelessly connected to the edge gateway.
We create virtualized devices and topology using Cisco’s
GNS3 [7] virtualization testbed. Remote SoCs control the
edge gateways, performing analysis and detection (including
LLMGRAPH model training). By combining physical and
virtual topologies, our testbed accommodates a wide range
of edge network settings.

Dataset: We evaluate LLMGRAPH by deploying four real-
world datasets - IoT-23 [39], IoT Sentinel [52], VirusTotal [6],
and Tranco [56], on our hybrid testbed. The IoT-23 [39] and
IoT Sentinel [52] are network trace datasets, and are deployed
by replaying the pcap files among the testbed devices. The
VirusTotal [6] and Tranco [56] are domain and url datasets,
and are deployed by running domain/url accessing scripts on
the testbed devices. More specifically, the IoT-23 dataset [39]
comprises network packet captures from IoT devices, featuring
20 distinct malware families and three sets of benign IoT
device traffic. Originally published in January 2020, its cap-
tures span from 2018 to 2019. The IoT Sentinel [52] records
benign network packets from 31 types of IoT devices in home
networks. VirusTotal [6] dataset is obtained by crawling the
VT Intelligence API [21] on Sep-2024. This dataset includes
domains and URLs from 30 malware families targeting home-
/business IoT devices. Tranco [56] is a ranked registry of
the top one million popular websites. To ensure legitimacy,
we filter Tranco domains using the VT Intelligence API [21]
and Google Safe Browsing API [16], excluding malicious or

10

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

0.162

0.515
0.375

0.282

0.438

0.893

0.0

0.2

0.4

0.6

0.8

1.0

FP
R

0.196
0.132 0.145 0.17 0.132

0.055

Signature-based detection
Anomaly-based detection (Kitsune)
Attack graph analysis
Provenance-based detection
GNN-based detection (E-GraphSAGE)
LLMGRAGH

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

0.727

0.409

0.591 0.636
0.523

0.038

Figure 9: Comparing single/multi-point detection, attack graph analysis, information flow analysis and LLMGRAPH.

Table V: Testcase analysis for different approaches.
Testcase Signature Anomaly Attack graph Provenance GNN-based LLMGRAPH Key APT Path
Sambacry part ✗ ✓ ✓ ✓ ✓ Siren - FreeNAS
Mirai ✗ part part ✓ ✓ ✓ 79.124.8.24/bins/sora.arm - Camera
Torri ✗ part ✗ ✗ ✗ ✓ 104.237.218.85 - WeMo
Okiru ✗ part ✗ ✗ ✗ part 37.48.99.233:5543 - ARC Camera
Heartbleed ✗ part part part part part Media Server - Laptop
Camera leakage ✗ ✓ ✗ ✗ ✓ ✓ gamblingonlinerealmoney - Edimax Camera
Light blackout ✗ ✗ ✗ ✗ ✗ ✓ Laptop - Philips Hue Bridge
Water overflow ✗ ✗ ✗ ✗ ✗ ✓ Laptop - D-Link Water Sensor
Fire hazard ✗ ✗ ✗ ✗ ✗ ✓ Android Phone - iKettle

expired entries. Since the domains and urls can expire, all
Tranco, VT Intelligence, and Safe Browsing data reflects the
Sep-2024 snapshot. The evaluation is also performed on Sep-
2024 and the datasets are collected/updated right before the
evaluation to ensure it is accurate.

Other approaches: We compare LLMGRAPH with
signature-based detection [11], anomaly-based detection [53],
and graph-based detection [55], [44], [40], [49]. The graph-
based detection includes the attack graph analysis [55], [44],
the provenance-based detection [40], and the GNN-based
detection [49]. For signature-based detection, we use Snort
version 2.9.8.0 [11]. For anomaly-based detection, we setup
Kitsune [53]. For attack graph analysis, we identify the known
vulnerabilities of every device and setup a symbolic execution
to enumerate all the possible paths that violates the security
condition based on the attack graph analysis [55], [44]. For
provenance-based detection, we compare with R-CAID [40].
For GNN-based detection, we setup E-GraphSAGE [49].

B. LLMGRAPH’s effectiveness

We compare the F1-Score, the FPR (False Positive Rate)
and the FNR (False Negative Rate) for signature-based de-
tection [11], anomaly-based detection (Kitsune [53]), attack
graph analysis [55], [44], provenance-based detection (R-
CAID [40]), GNN-based detection (E-GraphSAGE [49]) and
LLMGRAPH. F1-Score is defined as TP

TP+0 .5∗(FP+FN) . FPR
is defined as FP

FP+TN . FNR is defined as FN
FN+TP . As shown in

Figure 9, LLMGRAPH is more effective than other approaches,
increases F1-Score by at least 46.9%, reduces FPR by at least
9%, and reduces FNR by at least 48.5%.

We conduct troubleshooting on the test cases, as listed in
Table V. The signature-based detection are ineffective due
to APT attacks adopting evasive techniques, including 0-
day exploits. For anomaly-based detection [53], the False
Negatives occur due to low-frequency access, such as code
injection in the Sambacry attack, while it is also susceptible
to FPs because of benign communications with statistical

Table VI: LLM Sensitivity.
LLM Models F1-Score
Llama3-8B (LLMGRAPH’s default) 0.893
Vicuna-13B 0.872
Vicuna-7B 0.841
RedPajama-7B 0.824
RedPajama-3B 0.768

anomalies. For attack graph analysis, the FNs primarily stem
from devices with unknown vulnerabilities (e.g., embedded
devices in Torri, Okiru, and camera leakage scenarios). For
provenance-based detection, the FNs are mainly caused by the
lack of host logs, especially on legacy or embedded devices
(e.g., Torri, Okiru, camera leakage, smart light blackout, water
sensor overflow, and fire alarm). For GNN-based detection,
the FNs result from the absence of flow context, such as IoT
control context in scenarios like smart light blackout, water
sensor overflow, and fire hazard. For LLMGRAPH, the FNs
are mainly caused by the encrypted traffic (e.g., Okiru with
an encrypted channel and heartbleed). However, LLMGRAPH
mitigates this issue by integrating host logs and leveraging
access facts.

LLM Sensitivity: In this part, we explore how
LLMGRAPH’s performance varies when using different
LLMs with different parameters - including Llama3-8B
(LLMGRAPH’s default), Vicuna-13B, Vicuna-7B, RedPajama-
7B and RedPajama-3B. These models are selected as they
are known to support low-cost edge deployment such as
MLC [61]. As shown in Table VI, Llama3-8B achieves the
highest F1-score due to its superior inference capabilities. We
also observe a consistent trend where larger parameter sizes
within the same model architecture yield better performance
– for example, Vicuna-13B outperforms Vicuna-7B. These
results demonstrate that the LLM’s inference capability
significantly influences detection accuracy.

C. LLMGRAPH’s scalability

In this part, we assess the scalability of LLMGRAPH. We
begin by expanding the size of a single network, adding more

11

0 5000 10000 15000 20000 25000 30000 35000
Number of devices and services

0.0

0.5
Tr

ai
ni

ng
 ti

m
e

(s
)

1 10 50 100 150 1K 10K 100K 1M
Number of networks

100
101
102
103

Tr
ai

ni
ng

 ti
m

e
(s

)

Figure 10: The training time for LLMGRAPH on different
network sizes and different number of networks.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.00

0.25

0.50

0.75

1.00

FN
R

n-model
1-model
LLMGRAPH

Figure 11: FPR and FNR for 8 different edge networks.
devices and services. As shown in Figure 10 (top), when we
increase the network size from 1 to 35,000 (considering both
devices and services), the training time scales linearly and is
less than 0.5 seconds. Next, we explore the impact of training
multiple networks. Figure 10 (bottom) illustrates the training
time as we increase the number of networks from 1 to 1
million (each network has a fixed size of 240 devices and
services). Remarkably, LLMGRAPH ’s training time remains
within a reasonable range. For instance, training 1 million
networks takes less than 1,000 seconds. The scalability of
LLMGRAPH is attributed to the LLM-based aggregator. By
clustering and merging the communication abstractions of
different networks, LLMGRAPH reduces context switching
time during the learning stage (e.g., TensorFlow [22] session
initiation time). Additionally, since LLMGRAPH ’s training
time is minimal (less than 1 second for a network with
35,000 devices and services), it can provide real-time model
updates when new devices join or APT emerge. This makes
LLMGRAPH suitable for real-time detection and prevention.

Given real-world scalability requirements, consider an en-
terprise with 100,000 remote workers (comparable to a large
portion of Google’s 183,000-employee workforce). For such
an environment spanning 100,000 home networks, our solution
achieves training times between 100-1,000 seconds (under 17
minutes). This duration is fully acceptable for periodic model
updates. Critically, the system supports parallel deployment:
Training occurs in development environments while detection
runs in production SOC environments. This architecture en-
sures training processes introduce zero latency to real-time
threat detection.

D. Handle diverse edge networks

This section assesses LLMGRAPH’s effectiveness across
diverse edge network environments. We compare it against two

1 2 3 4 5 6 7 8
Edge Networks

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
nc

y

LLMGRAGH (without node selection)
LLMGRAGH (without domain-specific RAG)
Manual Labeling
LLMGRAGH

Figure 12: Benefit of the LLM-based annotator.
baseline strategies: 1) Per-Network Models (n-model): Trains
a separate GCN model for each edge network (e.g., 8 distinct
models for 8 networks); 2) Unified Model (1-model): Uses a
single GCN model across all networks. Figure 11 presents the
evaluation across 8 heterogeneous edge networks. The n-model
strategy suffers from high False Negative Rates (FNR) due to
insufficient training data per individual network. The 1-model
strategy exhibits elevated False Positive Rates (FPR) caused
by its inability to accommodate network diversity. Also, the
GCN training time of n-model is 1.78s, which almost 8 times
higher than the 1-model’s 0.23s, due to n-model’s repeated
framework initialization costs (e.g., TensorFlow startup over-
head). LLMGRAPH significantly outperforms both baselines,
reducing FNR by 83.3% and FPR by 61.4%, with an low
training time of 0.27s (as the 8 networks are merged by the
LLM Aggregator and only needs to be trained once for GCN).

E. Benefit of LLMGRAPH’s Components

LLM-based Annotator: We compare the LLM-based an-
notator to manual labeling. We conduct an IRB-approved
study and invited ten security personal4 with vulnerability
mining competition experiences to manually label devices
and network flows across eight edge networks. Figure 12
illustrates the labeling accuracy for each network. Overall,
LLMGRAPH’s LLM-based annotator achieves a 27.09% ac-
curacy improvement comparing with manual labeling. We also
found that the performance of manual labeling is heavily
impacted by the scale of the network. For instances, the
accuracy of manual labeling is low on large networks such
as network 5 (around 1000 devices and flows) and network 6
(around 500 devices and flows).

We conduct an ablation study to evaluate the contribution
of each component in the LLM-based annotator. As illustrated
in Figure 12, we separately remove the domain-specific RAG
module and the node selection module. Results demonstrate
that both components significantly enhance performance, with
the RAG module providing greater accuracy gains. Specifi-
cally, integration of the domain-specific RAG module boosts
accuracy by 35.2%, and inclusion of the node selection module
improves accuracy by 23.6%. This confirms the RAG module’s
marginally higher contribution to overall accuracy.

Extended GCN: We compare LLMGRAPH ’s extended
GCN with basic GCN in terms of F1-Score, FPR, and FNR,
as depicted in Figure 13. In this experiment, the basic GCN
is performing per-device level detection, and LLMGRAPH ’s

4Each personal was given one masked ID, and no personal information was
gathered in the IRB-approved study.

12

F1-Score FPR FNR
0.00

0.25

0.50

0.75 Basic GCN
Extended GCN

Figure 13: Benefit of LLMGRAPH’s extended GCN.

0.00 0.25 0.50 0.75 1.00
F1-Score

basic gcn
augmentation

augmentation+
 aggregation

0.194
0.541

0.893

0.00 0.25 0.50 0.75 1.00
FNR

0.885
0.615

0.038

0.00 0.25 0.50 0.75 1.00
FPR

basic gcn
augmentation

augmentation+
 aggregation

0.017
0.009
0.055

0 1 2 3
Training Time (s)

3.425
3.439

0.736

Figure 14: Benefit of the LLM-based aggregator.
extended GCN is performing per-flow level detection. The
F1-Score, FPR, and FNR are calculated at per-device level
for basic GCN and at per-flow level for LLMGRAPH ’s
extended GCN. Compared with basic GCN, the extended GCN
yields a 9.4% increase in F1-Score and an 83.5% reduction
in FNR, with a reasonable low FPR below 0.06. LLMGRAPH
’s extended GCN can effectively reduce the FNR, as the flow
context significantly enhances the detection of malicious cases.
The more fine-grained per-flow level detection cause the FPR
to increase, but is reasonably low below 0.06. Overall, the
extended GCN can provide more accurate detection at a finer-
granularity than the basic GCN.

LLM-based Aggregator: In this section, we assess the
benefits of LLMGRAPH’s LLM-based Aggregator, which
includes two enhancements - data augmentation and network
aggregation. In the evaluation process, we start with basic
GCN, and incrementally adding each enhancement. As shown
in Figure 14, the combined effect of data augmentation and
network aggregation leads to a 69.9% improvement in F1-
Score, an 84.7% reduction in FNR, and an FPR below 0.055.
Additionally, training time decreases significantly—from the
basic GCN’s 3.4 seconds to LLMGRAPH ’s 0.74 seconds
(for 45 networks with a maximum size of 398 devices and
services), resulting in a 78% reduction in training time.
From basic GCN to data augmentation, the improvements
are mainly because the data augmentation balances the biased
ratio of malicious cases and benign cases, and enhances the
“attention” to the malicious devices and services and their
boundary with the benign neighbors. For network aggregation,
the main improvements are because the edge networks are
clustered and merged. The testcases are shared and each cluster
has a dedicated model, which helps to address the insufficient
data issue and the variance issue across diverse edge networks.

IX. RELATED WORKS

Anomaly-based detection: Anomaly-based detection identi-
fies security threats through deviations from established statis-
tical baselines in network traffic patterns [53], [25], [24], [38],
[35], [48]. This approach encompasses several specialized

methodologies: Kitsune [53] employs autoencoders to detect
anomalies by measuring reconstruction errors (e.g., RMSE) in
traffic feature representations. Complementary sampling-based
techniques include Bartos et al.’s random forest classifier [25]
and FlowLen’s [24] ensemble learning applied to sampled
traffic flows. For periodic traffic analysis, Whisper [38] utilizes
spectral decomposition in the frequency domain to identify
deviations from normal flow periodicity signatures. Beyond
network traffic, DeepLog [35] applies recurrent neural net-
works to model temporal patterns in system logs for anoma-
lous event detection, while Jaqen [48] specializes in DDoS
identification through probabilistic flow sketching. However,
it’s important to note that these anomaly-based detection
methods primarily focuses on statistical anomalies and may
still be vulnerable to APTs with evasive techniques such as
low-frequency penetration.
Attack graph analysis: Attack graph analysis [55], [44]
provides a formal methodology for assessing system security
by generating a comprehensive representation of all potential
paths an intruder could exploit to achieve their objectives
within a system. Constructing such graphs necessitates detailed
knowledge of known device vulnerabilities, user privilege
assignments, and explicit assumptions regarding the attacker’s
specific goals. Phillips and Swiler [55] propose the basic
concept of attack graphs with an “attack-centric” view of the
system, which models the sequences of malicious events initi-
ated by the attacker, representing the system’s state transitions
solely through adversarial actions. Jha et. al. [44] proposed a
more generic language with a wider range of system events
(such as failure of a link and user errors) and attacks occur
simultaneously. However, it’s important to note that the attack
graph approach heavily relies on existing knowledge of device
vulnerabilities and assumes clear attacker goals, which is hard
to achieve in millions of edge networks.
Provenance-based detection: Provenance-based detection
leverages data lineage tracing to analyze the origins and
history of system events, offering valuable insights for in-
trusion detection [40], [43], [47], [60]. Several notable im-
plementations advance this approach: R-CAID [40] integrates
Root Cause Analysis (RCA) by precomputing node-level
root causes during graph construction and embedding these
causal relationships directly. TagS [47] provides a unified
representation of system behavior through provenance graphs,
designed for extensibility to diverse environments includ-
ing containers and microservices. Meanwhile, P-EDR [34]
models event-level data and control dependencies within its
provenance framework. Despite their strengths, these methods
face significant operational limitations. They typically require
manual labeling efforts (e.g., classifier training in R-CAID)
and encounter scalability constraints due to the processing
demands of voluminous system logs, presenting challenges for
real-time deployment.
Series of GNN-based detection: Graph Neural Networks
(GNNs) represent a growing frontier in network intrusion
detection systems, offering promising approaches to model
complex relational data inherent in network infrastructures.
This research trajectory includes several notable contributions:
Friji et al. [37] established a GNN framework that classifies

13

communication flows through maliciousness scoring, provid-
ing a graph-based methodology for threat assessment. Another
significant advancement, StrucTemp-GNN [26], specifically
addresses the unique challenges of IoT ecosystems by jointly
modeling structural topology and temporal dependencies, en-
abling more accurate real-time intrusion detection in dy-
namic edge environments. Further advancing this domain, E-
GraphSAGE [49] enhances detection capabilities by explicitly
leveraging the inherent hierarchical relationships within graph-
structured network data, optimizing neighborhood aggregation
techniques to improve pattern recognition in security-relevant
graph representations. Despite these innovations, conventional
GNNs (e.g., GCN [46], GraphSAGE [41]) fundamentally fail
to capture essential network flow context and directional
relationships due to adjacency matrix constraints [23]. While
costly extensions like Hodge Laplacians partially embed edge
attributes, they remain impractical for analyzing multiplexed
traffic flows on single edges [67], [58]. A critical operational
limitation is the dependency on significant labeled node sub-
sets (5% as per GCN [46]) – a requirement logistically
infeasible in edge networks where comprehensive ground truth
is unavailable, creating real-world deployment barriers.

X. DISCUSSION

Handling encrypted communication: A considerable portion
of communications in edge networks are encrypted. LLM-
GRAPH mitigates this issue in two ways. The first way is
to leverage network flow metadata, providing correlations
between devices and network flows in GCN adjacency matrix.
Another way is to integrate host logs, incorporating this
information into the GCN nodes. We show the effectiveness
of such mitigation in Section VIII.
Handling adversarial ML attacks: Recent studies [50], [59],
[51], [66], [30] have highlighted the susceptibility of Graph
Neural Networks (including GCN) to adversarial ML tech-
niques. The adversarial ML techniques’ focus is to use flow
perturbations to cause FNs and FPs in the GNN-based detec-
tion. LLMGRAPH provides a practical protective mechanism
to disrupt the adversary’s flow perturbations capability via set-
ting limits on perturbation budget and introduce randomness in
graph augmentation, as shown in our supplementary materials.
We will future explore this direction in the future.
Relation with Federated Multi-Task learning: Recent feder-
ated multi-task learning mechanisms [57] also aims at solving
the insufficient data and diversity issue. However, federated
multi-task learning is a distributed learning process that re-
quires an effective local learning model (such as SVM) as the
base model. Therefore, LLMGRAPH may serve as the base
model for federated multi-task learning and we will explore
the possibility of combination in the future.

XI. CONCLUSION

Remote working from weakly secured edge networks faces
severe threats from APTs. Current security detection systems,
including signature-based detection, anomaly-based detection
and graph-based detection, are ill-equipped for addressing
APTs considering the scale and complexity of edge networks.

In this paper, we propose LLMGRAPH- a learning mechanism
that combines LLM and GCN to achieve label-free detection
against APTs in edge networks. We show LLMGRAPH is
effective & scalable and is a promising component (e.g.,
deployed in edge security gateways) to help secure edge
networks. We also acknowledge that there is still room for
improvement for LLMGRAPH in handling encrypted commu-
nication and handling adversarial ML attacks. We will explore
these directions further in future works.

REFERENCES

[1] 7-year-old samba flaw lets hackers access thousands of linux pcs
remotely. https://thehackernews.com/2017/05/samba-rce-exploit.html,
2017.

[2] Hacking team hack. https://gist.github.com/Sjord/
ac8dfff3a3ac3180c065f370f24b30a8, 2018.

[3] Amazon eero. https://eero.com/, 2021.
[4] Cisco meraki. https://meraki.cisco.com/, 2021.
[5] Netgear orbi. https://www.netgear.com/home/wifi/mesh/, 2021.
[6] Virustotal. https://www.virustotal.com/gui/, 2021.
[7] Getting started with gns3. https://docs.gns3.com/docs/, 2022.
[8] Chatgpt. https://openai.com/chatgpt, 2023.
[9] Microsoft copilot. https://www.microsoft.com/en-us/microsoft-copilot,

2023.
[10] Redpajama, a project to create leading open-source models. https://www.

together.ai/blog/redpajama, 2023.
[11] Snort. https://www.snort.org/, 2023.
[12] Vicuna model. https://huggingface.co/lmsys/vicuna-13b-v1.5, 2023.
[13] What is the log4j vulnerability? https://www.ibm.com/topics/log4j,

2023.
[14] Wormgpt: An ai tool for hackers. https://www.popularmechanics.com/

technology/security/a45533297/what-is-wormgpt/, 2023.
[15] Faiss. https://faiss.ai/, 2024.
[16] Google safe browsing. https://safebrowsing.google.com/, 2024.
[17] Hackergpt. https://github.com/Hacker-GPT/HackerGPT, 2024.
[18] Langchain. https://www.langchain.com/, 2024.
[19] Llama 3. https://ollama.com/library/llama3, 2024.
[20] Ollama. https://ollama.com/, 2024.
[21] Protecting the perimeter with vt intelligence - malicious urls. https:

//blog.virustotal.com/2023/12/protecting-perimeter-with-vt 18.html,
2024.

[22] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A system for Large-Scale
machine learning. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). USENIX Association, 2016.

[23] U. Alon and E. Yahav. On the bottleneck of graph neural networks and
its practical implications. arXiv preprint arXiv:2006.05205, 2020.

[24] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. Ramos, and
A. Madeira. Flowlens: Enabling efficient flow classification for ml-based
network security applications. In NDSS, 2021.

[25] K. Bartos, M. Sofka, and V. Franc. Optimized invariant representation
of network traffic for detecting unseen malware variants. In USENIX
security symposium, pages 807–822, 2016.

[26] I. E. Boukari, I. A. Derdouha, S. Bouzefrane, L. Hamdad, S. Nait-
Bahloul, and T. Huraux. Structemp-gnn: An intrusion detection
framework in iot networks using dynamic heterogeneous graph neural
networks. In International Conference on Mobile, Secure, and Pro-
grammable Networking, pages 17–39. Springer, 2023.

[27] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks
and deep locally connected networks on graphs. In 2nd International
Conference on Learning Representations, ICLR 2014, 2014.

[28] J. Bruna, W. Zaremba, A. D. Szlam, and Y. LeCun. Spectral networks
and locally connected networks on graphs. CoRR, abs/1312.6203, 2014.

[29] Z. B. Celik, G. Tan, and P. Mcdaniel. Iotguard: Dynamic enforcement of
security and safety policy in commodity iot. Proceedings 2019 Network
and Distributed System Security Symposium (NDSS), 2019.

[30] H. Chang, Y. Rong, T. Xu, W. Huang, H. Zhang, P. Cui, W. Zhu,
and J. Huang. A restricted black-box adversarial framework towards
attacking graph embedding models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 3389–3396,
2020.

14

https://thehackernews.com/2017/05/samba-rce-exploit.html
https://gist.github.com/Sjord/ac8dfff3a3ac3180c065f370f24b30a8
https://gist.github.com/Sjord/ac8dfff3a3ac3180c065f370f24b30a8
https://eero.com/
https://meraki.cisco.com/
https://www.netgear.com/home/wifi/mesh/
https://www.virustotal.com/gui/
https://docs.gns3.com/docs/
https://openai.com/chatgpt
https://www.microsoft.com/en-us/microsoft-copilot
https://www.together.ai/blog/redpajama
https://www.together.ai/blog/redpajama
https://www.snort.org/
https://huggingface.co/lmsys/vicuna-13b-v1.5
https://www.ibm.com/topics/log4j
https://www.popularmechanics.com/technology/security/a45533297/what-is-wormgpt/
https://www.popularmechanics.com/technology/security/a45533297/what-is-wormgpt/
https://faiss.ai/
https://safebrowsing.google.com/
https://github.com/Hacker-GPT/HackerGPT
https://www.langchain.com/
https://ollama.com/library/llama3
https://ollama.com/
https://blog.virustotal.com/2023/12/protecting-perimeter-with-vt_18.html
https://blog.virustotal.com/2023/12/protecting-perimeter-with-vt_18.html

[31] T. Chen, H. Wang, S. Chen, W. Yu, K. Ma, X. Zhao, D. Yu, and
H. Zhang. Dense x retrieval: What retrieval granularity should we use?
arXiv preprint arXiv:2312.06648, 2023.

[32] Z. Chen, H. Mao, H. Wen, H. Han, W. Jin, H. Zhang, H. Liu, and
J. Tang. Label-free node classification on graphs with large language
models (llms). In ICLR, 2024.

[33] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural
networks on graphs with fast localized spectral filtering. In NIPS, 2016.

[34] F. Dong, S. Li, P. Jiang, D. Li, H. Wang, L. Huang, X. Xiao, J. Chen,
X. Luo, Y. Guo, et al. Are we there yet? an industrial viewpoint on
provenance-based endpoint detection and response tools. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 2396–2410, 2023.

[35] M. Du, F. Li, G. Zheng, and V. Srikumar. Deeplog: Anomaly detection
and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC conference on computer and communications
security, pages 1285–1298, 2017.

[36] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and
A. Prakash. Flowfence: Practical data protection for emerging iot
application frameworks. In USENIX Security Symposium, 2016.

[37] H. Friji, A. Olivereau, and M. Sarkiss. Efficient network representation
for gnn-based intrusion detection. In International Conference on
Applied Cryptography and Network Security, pages 532–554. Springer,
2023.

[38] C. Fu, Q. Li, M. Shen, and K. Xu. Realtime robust malicious traffic
detection via frequency domain analysis. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
pages 3431–3446, 2021.

[39] S. Garcia, A. Parmisano, and M. J. Erquiaga. Iot-23: A labeled dataset
with malicious and benign iot network traffic (version 1.0.0). 2020.

[40] A. Goyal, G. Wang, and A. Bates. R-caid: Embedding root cause
analysis within provenance-based intrusion detection. In 2024 IEEE
Symposium on Security and Privacy (SP), pages 257–257. IEEE Com-
puter Society, 2024.

[41] W. L. Hamilton, Z. Ying, and J. Leskovec. Inductive representation
learning on large graphs. In NIPS, 2017.

[42] W. He, M. Golla, R. Padhi, J. Ofek, M. Dürmuth, E. Fernandes, and
B. Ur. Rethinking access control and authentication for the home internet
of things (iot). In 27th {USENIX} Security Symposium ({USENIX}
Security 18), pages 255–272, 2018.

[43] M. A. Inam, Y. Chen, A. Goyal, J. Liu, J. Mink, N. Michael, S. Gaur,
A. Bates, and W. U. Hassan. Sok: History is a vast early warning system:
Auditing the provenance of system intrusions. In 2023 IEEE Symposium
on Security and Privacy (SP), pages 2620–2638. IEEE, 2023.

[44] S. Jha, O. Sheyner, and J. Wing. Two formal analyses of attack graphs.
In Proceedings 15th IEEE Computer Security Foundations Workshop.
CSFW-15, pages 49–63. IEEE, 2002.

[45] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M.
Mao, A. Prakash, and S. J. Unviersity. Contexiot: Towards providing
contextual integrity to appified iot platforms. In Proceedings of The
Network and Distributed System Security Symposium, volume 2017,
2017.

[46] T. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. ICLR, 2017.

[47] Z. Li, Y. Wei, X. Shen, L. Wang, Y. Chen, H. Xu, S. Ji, and
F. Zhang. Tags: Real-time intrusion detection with tag-propagation-
based provenance graph alignment on streaming events. arXiv preprint
arXiv:2403.12541, 2024.

[48] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, and V. Sekar. Jaqen: A high-performance switch-native
approach for detecting and mitigating volumetric ddos attacks with
programmable switches. In USENIX Security Symposium, 2021.

[49] W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann. E-
graphsage: A graph neural network based intrusion detection system
for iot. In NOMS 2022-2022 IEEE/IFIP Network Operations and
Management Symposium, pages 1–9. IEEE, 2022.

[50] J. Ma, S. Ding, and Q. Mei. Towards more practical adversarial attacks
on graph neural networks. Advances in neural information processing
systems, 33:4756–4766, 2020.

[51] Y. Ma, S. Wang, T. Derr, L. Wu, and J. Tang. Graph adversarial attack
via rewiring. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pages 1161–1169, 2021.

[52] M. Miettinen, S. Marchal, I. Hafeez, T. Frassetto, N. Asokan, A.-
R. Sadeghi, and S. Tarkoma. Iot sentinel: Automated device-type
identification for security enforcement in iot. In ICDCS, 2017.

[53] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai. Kitsune: an
ensemble of autoencoders for online network intrusion detection. 2018.

[54] V. Paxson. Bro: A system for detecting network intruders in real-time.
In Computer Networks, pages 2435–2463, 1999.

[55] C. Phillips and L. P. Swiler. A graph-based system for network-
vulnerability analysis. In Proceedings of the 1998 workshop on New
security paradigms, pages 71–79, 1998.

[56] V. L. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński,
and W. Joosen. Tranco: A research-oriented top sites ranking hardened
against manipulation. arXiv preprint arXiv:1806.01156, 2018.

[57] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar. Federated multi-
task learning. In NIPS, 2017.

[58] H. Sun, X. Li, D. Su, J. Han, R.-H. Li, and G. Wang. Towards data-
centric machine learning on directed graphs: a survey. arXiv preprint
arXiv:2412.01849, 2024.

[59] Y. Sun, S. Wang, X. Tang, T.-Y. Hsieh, and V. Honavar. Adversarial
attacks on graph neural networks via node injections: A hierarchical
reinforcement learning approach. In Proceedings of the Web Conference
2020, pages 673–683, 2020.

[60] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia. Some
recipes can do more than spoil your appetite: Analyzing the security and
privacy risks of ifttt recipes. In Proceedings of the 26th International
Conference on World Wide Web, pages 1501–1510, 2017.

[61] M. team. MLC-LLM, 2023.
[62] R. L. Thorndike. Who belongs in the family? 1953.
[63] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and P. Tague.

Smartauth: User-centered authorization for the internet of things. In
USENIX Security Symposium, pages 361–378, 2017.

[64] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al.
Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

[65] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903,
2017.

[66] X. Wan, H. Kenlay, R. Ru, A. Blaas, M. A. Osborne, and X. Dong.
Adversarial attacks on graph classifiers via bayesian optimisation. Ad-
vances in Neural Information Processing Systems, 34:6983–6996, 2021.

[67] Y. Zhou, H. Huo, Z. Hou, L. Bu, J. Mao, Y. Wang, X. Lv, and F. Bu.
Co-embedding of edges and nodes with deep graph convolutional neural
networks. Scientific Reports, 13(1):16966, 2023.

Tianlong Yu is an Associate Professor in the School
of Artificial Intelligence at Hubei University. He
earned his Ph.D. in Computer Science from Carnegie
Mellon University. He was awarded the Symantec
Fellowship in 2017. Dr. Yu has published exten-
sively in top-tier journals and conferences, including
NDSS and NSDI. After completing his Ph.D., he
joined Palo Alto Networks to develope cybersecurity
products for edge networks. He has extensive expe-
rience in translating research findings into practical
products. Dr.Yu’s current research interests include

network security, distributed machine learning, and large language models.

Gaoyang Liu received the Ph.D. degree from School
of Electronic Information and Communications at
Huazhong University of Science and Technology,
Wuhan, China, in 2021. He is currently a postdoc-
toral researcher in School of Computing Science at
Simon Fraser University, British Columbia, Canada.
His research interests include security and machine
learning.

15

Chen Wang (S’10-M’13-SM’19) received the B.S.
and Ph.D. degrees from the Department of Au-
tomation, Wuhan University, China, in 2008 and
2013, respectively. From 2013 to 2017, he was a
postdoctoral research fellow in the Networked and
Communication Systems Research Lab, Huazhong
University of Science and Technology, China. There-
after, he joined the faculty of Huazhong University
of Science and Technology where he is currently
an associate professor. His research interests are in
the broad areas of wireless networking, Internet of

Things, and mobile computing, with a recent focus on privacy issues in
intelligent systems. He is a senior member of IEEE and ACM.

Yang Yang is an Associate Professor at the School
of Artificial Intelligence, Hubei University. He
earned his Bachelor of Engineering and Master of
Science degrees from Wuhan University of Tech-
nology in 2009 and 2012, respectively. In 2017,
he obtained his Ph.D. in computer science from
Huazhong University of Science and Technology,
under the supervision of Professor Hongbo Jiang.
With the support of the China Scholarship Council
(CSC), he visited Simon Fraser University in Canada
in 2013, where he worked under the guidance of

Professor Jiangchuan Liu. His research interests are primarily in networking
and machine learning.

16

	Introduction
	Motivation
	Edge networks are increasingly threatened by APTs
	Pain points of APT detection in edge networks
	Opportunity: GCN and LLM

	Overview
	LLM Annotator
	Domain-specific RAG pipeline
	Confidence-aware node selection

	Extended GCN
	Communication graph abstraction
	Construct LLMGraph abstraction
	GCN workflow
	Extending GCN Expressiveness

	LLM-based Aggregator
	Handling Insufficient Data
	Handling Variance between Networks

	Implementation
	Evaluation
	Experiment Setup
	LLMGraph's effectiveness
	LLMGraph's scalability
	Handle diverse edge networks
	Benefit of LLMGraph's Components

	Related Works
	Discussion
	Conclusion
	References
	Biographies
	Tianlong Yu
	Gaoyang Liu
	Chen Wang
	Yang Yang

