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Abstract—The emerging of machine learning has massively promoted the abilities of computational sustainability in natural resource
management and allocation. Many Internet giants such as Google, Amazon, and Microsoft now provide Machine Learning as a Service
(MLaaS) to meet the increasing demand for machine learning services. However, the prediction results of training data and testing data
with the same machine learning model in MLaaS have remarkable differences, and thus the attackers can leverage machine learning
techniques to launch the so-called membership inference attacks, i.e., to infer whether a record is in the training data or not. In this
paper, we propose MIASec that can guarantee the data indistinguishability of the training data and thereby has the ability to defend
against membership inference attacks in MLaaS. The key idea of MIASec is to narrow the dynamic ranges of vital features in the
training data, such that the training data, the testing data, and even the synthetic data have almost semblable prediction results by the
same machine learning model. With elaborated design on modifying the values of vital features in the training data, MIASec can thus
reduce the differences between the model’s outcomes of training data and testing data, thereby protecting the training data in effect
while keeping the model’s accuracy stable. We empirically evaluate MIASec on machine learning models trained by off-line neural
networks and on-line MLaa$S. Using realistic data and classification tasks, our experiment results show that MIASec can defend the
membership inference attacks effectively. In particular, MIASec can reduce the precision and recall of attacks respectively by 11.7 and

15.4 percent in average, and by 18.6 and 21.8 percent at best.

Index Terms—Membership inference attack, MLaaS, K-Means, data indistinguishability

1 INTRODUCTION

COMPUTATIONAL sustainability, a branch about the sus-
tainability research in sustainable solutions and their
implementation, has attracted the attentions and interests of
researchers in computer science, while in recent years,
machine learning has dramatically reduced the cost of
human labors while improving the utilization of computing
equipments [1], [2], [3].

To put this in context, machine learning as a service
(MLaa$), a range of services offering machine learning tools
as part of cloud computing services, has recently sprouted up
to meet this demand by Internet giants such as Google, Ama-
zon and Microsoft. MLaaS allows customer companies to get
access to machine learning technologies, and to assess and
learn from data without requiring in-house domain expertise.

1.1 Motivation

MLaa$S platforms allow users to run various data analytics
or model the data of their own. The obtained models via
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MLaaS can be further deployed to services of the users.
During this process, however, potential vulnerabilities of
MLaaS have been recently found, one of which is the so-
called membership inference attacks [4], [5], i.e., determining
whether ¢t was used as part of 1" or not, given an instance ¢
and black-box access to a machine learning model trained
on a dataset 7.

Membership inference attacks can be considered inva-
sion of the privacy of both the individual participants and
the owner of training data. The former refers to the member-
ship privacy of individuals who are participated in the
model training process while the latter concerns unautho-
rized leakage of business secrets risks. Unfortunately,
MLaaS platform operators at this time neither explicitly
give warning nor provide solutions to these risks [4], [5].
In this case, it is necessary to design effective defense
techniques to protect against membership inference attacks
in MLaaS.

At present, there is no effective defense technique spe-
cially designed against the membership inference attacks
in MLaaS. Differential privacy may be one potential
countermeasure, which can theoretically guarantee pri-
vacy leakage about data of one specific user. However,
existing mechanisms achieving differential privacy (e.g.,
the Laplacian mechanism [6] and the exponential mecha-
nism [7]) are either computationally infeasible on high
dimensional data, or practically ineffective due to huge
utility loss. For this reason, it is still not clear yet how to
effectually defend against membership inference attacks
in MLaaS.
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1.2 Our Contributions

In this paper, we propose MIASec that can guarantee the
input data indistinguishability and thereby has the ability to
defend against membership inference attacks in MLaaS. The
key idea of MIASec is to narrow the dynamic ranges of vital
features in the training data, such that the training data, test-
ing data, and even the synthetic data have almost semblable
prediction results by the same machine learning model.
With elaborated design on modifying the values of vital fea-
tures in the training data, MIASec can thus reduce the differ-
ence between the model’s outcomes of training data and
testing data, thereby protecting the training data in effect
while keeping the model’s accuracy stable. We empirically
evaluate MIASec on machine learning models trained by off-
line neural networks and on-line MLaaS. Using the realistic
data and classification tasks, our experimental results show
that MIASec can defend the membership inference attacks
effectively. In particular, MIASec can reduce the precision
and recall of attacks respectively by 11.7 and 15.4 percent in
average, and by 18.6 and 21.8 percent at best.

The remainder of this paper is as follows. Section 2 pro-
vides some preliminary knowledge. Section 3 describes the
design of MIASec, followed by the performance evaluation
in Section 4. Section 5 presents related work and finally
Section 6 concludes the paper.

2 PRELIMINARY

2.1 Machine Learning as a Service

The increasing demand for machine learning services lever-
ages the emergence of MLaaS, which has been around for
some time on the major Internet companies’ cloud platforms.
Typical MLaa$S platforms include Google Prediction API,'
Amazon Machine Learning (Amazon ML)?, and Microsoft
Azure Machine Learning (Azure ML).> MLaaS takes the
shape of services in the cloud with automatic learning tools,
with various MLaa$S options that can be used solely in the
cloud or in a hybrid fashion, depending on the company’s
preferences. Also, adaptability can be simply implemented
on MLaa$S, making them tailored to the learner’s ability level
to establish personalized learning without fully learning the
complicated algorithms.

In general, the MLaa$S platforms provide APIs for users to
upload their data for model training and further to make use
of the model in various applications. Some platforms even
allow users to share the trained model with others via the
platform’s API for profit.* Though convenient, MLaaS is as
some kind of a black-box process as the training algorithms are
hidden from users. The type of the model may be chosen by
the platforms adaptively, but the users are not warned about
the consequences of over-fitting. This leads to the vulnerability
captured by the membership inference attacks in MLaaS.

2.2 Membership Inference Attacks in MLaaS
Membership inference attacks in MLaaS was first proposed
by Shokri et al. in [4]. In a membership inference attack, an

1. https:/ /cloud.google.com/prediction

2. https:/ /aws.amazon.com/machine-learning

3. https:/ /studio.azureml.net

4. https://cloud.google.com/prediction/docs/ gallery

attacker is given black-box access to a target classifier C(T')
and tends to infer whether a particular record ¢ is included
in the training set 7" or not.

The key idea of membership inference attack is that the
machine learning models often have different prediction
behaviours on the data that they were trained on versus the
data that they “meet” for the first time. These different pre-
diction behaviours are reflected in the target model’s out-
puts and are taken advantage of by Shokri et al. to perform
membership inference attacks using a binary classifier. To
derive the data for training the classifier, they rely on
shadow models to mimic the prediction behaviours of the
target model. Due to the similarity, the prediction differen-
ces of shadow model also exist in the target model; thus the
attackers can leverage the shadow model to find out the pre-
diction differences of the training data and testing data of
the target model.

Specifically, on the data sampled from 7T, the attacker
trains multiple “shadow models” using the same MLaaS
platform as the target model, and then queries each shadow
model with two sets of records: the training set of the
shadow model and a disjoint testing set. Since the shadow
model is constructed by the attackers, they can exactly
know the ground truth of the membership of the shadow
model’s training set. The prediction outputs of the shadow
models are labeled with “in” (reps. “out”) to identify the
membership of the shadow model’s training (reps. testing)
data. Using the constructed dataset by shadow models, the
attacker trains a neural network as “attack” classifier and
uses it to infer whether the target record ¢ is in the training
data of the target model or not, given black-box access to
the classifier C(T').

When the training of “attack” model is completed, the
attacker queries the target model with a record and the pre-
diction result is classified by the “attack” model to infer
whether the given record is in the training set of target
model or not.

2.3 K-Means Algorithm

Modern machine learning models have great abilities for
“memorizing” the important information of input data [8].
To protect the sensitive information of training data, an
effective method is to cluster the data and replace the raw
data with cluster centroids. Thus the detailed information
of every record are hidden, which increases the difficulty
for attackers to infer the member of training data.

K-Means [9] technique is widely used in identifying
some inherent relationship presented in a set of objects. The
purpose of K-Means cluster analysis is to classify raw data
into subsets with some meaning in the context of a particu-
lar problem. Specifically, in clustering, a set of patterns, usu-
ally vectors in a multi-dimensional space, are grouped into
clusters in such a way that patterns in the same cluster are
similar in some sense while patterns in different clusters
are not.

K-Means algorithm often consists of the following steps:

Step 1. Choosing K initial cluster centroids zi,2;--- 2K
randomly from the input data.

Step 2. Assigning every record in the input data to a cer-
tain cluster C;,i € 1,2,3--- K if the distance between the
record and the centroid of C; is the smallest.
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Fig. 1. System structure of MIASec.

Step 3. Calculating the total aggregation of distances of
the every record to its cluster centroid, which is used to
evaluate the performance of cluster.

Step 4. Updating the centroids 2,2, - - - zx by averaging
the records in every cluster.

Step 5. Repeating Steps 2~4 until the cluster centroids no
longer change.

Although K-Means performs well in unsupervised clus-
tering, it requires a user to specify a vital parameter: the
number of clusters K, which has a great impact on the clus-
tering performance. In this paper, we propose a dynamic K
selection algorithm to cluster the raw data in order to hide
the sensitive information so that the input data indistin-
guishability can be achieved to defend against membership
inference attacks in MLaaS.

3 MIASEC DESIGN

The basic idea of MIASec is straightforward: by modifying
the values of vital features in the training data, MIASec can
reduce the differences between the model’s outcomes of
training data and testing data. In this way, MIASec poses
resistance to attackers to infer the membership of the train-
ing set by distinguishing the model’s outcomes, thereby
protecting the training data in effect. To this end, MIASec
mainly consists of the following three steps (cf. Fig. 1).

(@) Searching for appropriate features. The first step of
MIASec is to select a set of features which have
prominent impacts on the predicting accuracy of a
machine learning model trained on the same dataset.
On top of that, MIASec identifies those vital features
by comparing the information entropies with each
other. For clarity, we denote F' = [fi, fo,..., f,] as
the selected features, where f; is the ith selected fea-
turein F.

Confusing the data of selected features. For feature f; in
F, it is not sufficient to to protect the data effectively
by modifying the values of f; with a fixed method or
noising the values with Laplace noise which is widely
used in differential privacy. In MIASec, we propo-
sed a data confusion method based on K-Means
algorithm, such that differences between the training
data and testing data are narrowed.

Re-training the machine learning model. In the third
step, we re-train the machine learning model using
our confused data obtained in the second step. With

(b)

(©

Feature Selection Data Confusion ML Model
Module Module Re-Training
o fstmatng | o reature N e
D S Seleétlon Training Data | ML Model
ataSet Re-construction Training
Estimating B I?té;(_a Nominal Attribute
artition i eati
Fungibility > Modification
A
Rest Data

the re-trained model, we can reduce the performance
difference of the new model among the training data
and test data; thus the new model is able to increase
the difficulty for attackers to infer the membership of
the training set.

3.1 Feature Selection
Modifying all features of a record in the dataset, the valid
information carried by the data will be reduced dramati-
cally, and thus the machine learning model trained using
the totally confused data is more likely to perform worse
than the original model. To guarantee the usability for
machine learning model while increasing the difficulty for
attackers, MIASec selects a part of features which are vital
and irreplaceable to the machine learning model, and then
modifies the values of these features. We introduce two
metrics to quantify the importance and fungibility of a cer-
tain feature: one is the predicting accuracy of machine learn-
ing model, and the other is the cross entropy of this feature.
Next, we elaborate the cross entropy corresponding to
each feature in the training data. Cross entropy measures
the performance of a classification model and is denoted as

follows:
C

H(yag) = _Z

c=1 1

v tog (7). M
where y indicates which class the record belongs to, and ¢
shows the probability that the record belongs to a certain
class. C' is the number of classes and M is the number of
records in the dataset.

Fig. 2a shows the first step of feature selection of MIASec.
We first pick out the ith feature (we assume that the original
dataset has N features and i € [1,2--- N], and denote the
values of the picked feature as Feature;). Then we train a set
of models on different Feature; using the same algorithm
and training settings of the reference model Modelrgr
(shown as the red rectangle in Fig. 2a), and denote these
models as Model;. Next we calculate the standard cross-
entropy between the predictions of Modelrpr and Model;.
The value of cross-entropy can quantitatively indicate the
impact of Feature; on the predicting results. The higher the
cross entropy is, the less important the corresponding fea-
ture is. At the end of this step, we choose the features with
the smallest cross-entropies as the Select Feature F,;.

However, it is not sufficient to select features just by com-
paring how much one single feature contributes to the pre-
dict results. In some cases, one feature may have huge

M
=1
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(a) Crutial Feature Selection

Fig. 2. Feature selection of MIASec.

impacts on the predicting performance of the machine
learning model, but the rest features can be combined or
constructed to counteract the performance loss caused by
lacking one important feature. For example, although the
“Avenue Category” attribute in the Location dataset is sig-
nificant to our classifier of habit of users, we can leverage
the construction of users’ coordinates and Avenue locations
to replace “Avenue Category” while the accuracy of our
classifier is the same as before.

To select the features which cannot be replaced by others,
we measure the fungibility of each feature by analyzing the
deduction of machine learning model accuracy without this
feature. Fig. 2b shows the second step of feature selection of
MIASec. MIASec removes the ith feature of the original
data , and get the sub-dataset which we denote as Dataset;.
Similar with the first step, MIASec trains a reference model
on the original dataset and trains a series of models on dif-
ferent Dataset; alternatively using the same training set-
tings of the reference model. Then we leverage the standard
accuracy metric to evaluate the fungibility of each feature.
We analyze the accuracy of Model; and reference model,
and obtain the accuracy deduction of machine learning
model accuracy without ith feature. At the end of the sec-
ond step, we choose the features that have the largest accu-
racy deduction as the Select Feature F,...

By now, we get the crucial features F,,; and the irreplace-
able features F,... The features that appear in both sets are
selected as the final results of our feature selection module.

3.2 Data Confusion

In our adversary model, attackers know the format of the
inputs and outputs of the victim model, including their
number and the range of values they can take. Attackers
need to generate the synthetic data for obtaining the predic-
tions of the victim model. If the predictions of synthetic
data are similar with the training data, the attackers can
determine that the synthetic data are members of the train-
ing data.

The basic idea of our data confusion module is to narrow
the range of values of the selected features F’ properly, such
that the dynamic range of the synthetic data is limited,
and thereby the victim model always predicts semblable
results with the synthetic data. By doing so, the confused
data can thus increase the difficulty for attackers to distin-
guish the training data and non-training data by comparing
the predicting results.

Without 1* feature

Dataset 2

Without 2 feature

co——=
Dataset N

Without N* feature

Accuracy

uracy

Dataset 1 m -_‘ Deduction 1
o

Accuracy | Accuracy

Comparision

Selected
Feature Facc

(b) Irreplaceable Feature Selection

In this paper, we propose a machine learning based
method that can confuse the training data, while the model
can still have a relatively stable accuracy. The type of data
can be classed into numeric attributes and nominal attrib-
utes. Next, we will describe our methods on different data
type separately.

Numeric Attribute. MIASec turns the values of numeric fea-
tures into segments and leverages the segment indicator to
replace the original value. Our method changes the range of
values that the selected features into a specific set of labels.
Naturally, there are a question: how many segments are suit-
able for a certain attribute. Too many segments cannot protect
the training data effectively, while too little segments will
cause severe information loss. To achieve the balance between
performance of protection and loss of information, we design
a dynamic segment algorithm based on K-Means cluster.

For every numeric feature F),,, in selected features, we
construct the values of F},,,, and the true labels into a new
data D, Then we cluster D, into C' = [2,3,4------ ] suc-
cessively using K-Means algorithm and obtain the sequence
of cluster losses. For clarity, we denote the loss sequence as
Ljy,. To find the proper number of segments, we design a
metric as follows:

Lkm(c + 1) 1
Lkm(c) (2)

Lkm (C) +

Cpa = arg min
" & Lkm(2)

where C), is the chosen number of segments, and Ly, (c) is
the cluster loss for c clusters.

If Ly (c) is close to Ly, (c+ 1), while Ly, (c) is much
smaller than Ly, (2) at the same time, we choose ¢ as the
number of the segments empirically. Fig. 3 shows a demo of
the selection of Cj,. At last, MIASec makes use of the
boundaries of Cy, classes to serve as the segment points of
the feature’s values.

Nominal Attribute. For the nominal features, MIASec
reduces the label classes that the attributes can take by clus-
ter the values of features according to the probability distri-
butions that different kind of labels belongs to each class.
To achieve the balance between the performance of protec-
tion and loss of information, we adopt a similar approach to
the previous process of numeric attributes.

For every Nominal feature F,,, in selected features, we
calculate the probability distributions that different kind of
labels belongs to each class. We construct the probability
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Fig. 3. A example of the number of clusters selection.

distributions of F},,,, and the true labels into a new data D,,,,,,.
We cluster D, into C'=1[2,3,4------ ] successively using
standard K-Means algorithm and obtain the sequence of clus-
ter losses. By leveraging Equ. (2), MIASec finds the proper
number of clusters which can balance the performance of pro-
tection and information loss. At the end of this module, the
indicators of the K-Means’ clusters serve as the new labels to
replace the label values of F,,,,. Fig. 4 shows an example of
the processing of labels clustering and re-grouping.

3.3 Model Re-Training

Now that we have got the confused data, we next need to
re-train the machine learning model to make sure that our
data plays a role in protection against membership infer-
ence attacks. Since the value’s ranges of the selected features
are restrained by MIASec, the changes of re-trained model’s
predicting results are also narrowed as the values of con-
fused data vary. This makes attackers hard to distinguish
the training data by leveraging the differences in model’s
predictions.

We first describe how to re-train the machine learning
model with our confused data on local neural networks. We
build our original model with the help of Theano, which pro-
vides the whole structure of neural networks. Then the origi-
nal data are imputed into the model to train it. We adjust the
parameters of our network to increase the prediction accuracy
of this model, including the number of layers, the number of
nodes, learning rate, and so on. Every time the parameters are
changed, we need to train the model with original again until
we get an acceptable performance of prediction. After proc-
essing original data with MIASec, we replace the original
input data with our confused data while keeping all the
parameters unchanged, and get the re-trained model.

The procedure for re-training models with MLaaS is
much easier than the local neural networks. The MLaaS
platforms only provide the interfaces for uploading the
training data, and for training and querying models. The
details of the models and the training algorithms are hidden
from the data owners. Thus in this step, we only need to re-
upload the confused data to the MLaaS platforms to obtain
the re-trained machine learning models.

4 PERFORMANCE EVALUATION

In this section, we first introduce the datasets used for eval-
uation, followed by the description of our experimental
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Predict Predict Predict
Class 1 Class 2 Class 3
0.7 0.2 0.1

Coffee
% Label: 1
Milk 0.8 0.1 0.1
Cola 0.3 0.4 0.3
Beer 0.2 0.1 0.7
% Label: 3
Wine 0.1 0.1 0.8

Fig. 4. A toy demo that shows the processing of labels clustering and re-
grouping.

setups. Then we show the performance of MIASec in differ-
ent datasets and machine learning platforms.

4.1 Dataset Description

UCI Adult (Census Income). This Adult dataset is available on
the UCI Machine Learning Respository” and contains 48,842
records with 14 attributes such as age, gender, education,
marital status, occupation, working hours and native coun-
try. The feature set contains both continuous (e.g., age,
working hours) and discrete (e.g., education, gender) val-
ues. This dataset presents a binary classification task to pre-
dict if a person makes over $50K a year based on the census
attributes. We use 10,000 randomly selected records to gen-
erate a model whose training set needs to be protected from
membership inference attacks.

Purchases. Our purchase dataset comes from Kaggle
competition, “Acquire valued shoppers” challenge®, which
provides researchers with shopping histories of several
thousand individual customers. The purpose of this compe-
tition is to design accurate coupon promotion strategies. The
Kaggle’s dataset contains the transaction and the offer his-
tory records of each customer over a year. Specifically, the
transactions include many fields such as product name, store
chain, quantity, and data of purchase. The offers include cou-
pon type, category, quantity, company, brand and value of
the coupon.

For our experiments, we derived a simplified purchase
dataset, where each record consists of 15 features. Each fea-
ture corresponds to a certain field in the history of transac-
tions and offers. In order to evaluate the performance of
MIASec under different experimental conditions, we cluster
the records with a different number of classes {2,5, 10,
30, 50}, each class representing a different consumption style.
The classification task is to predict the consumption style of a
user given the input feature vector. We randomly select
10,000 records from the purchase dataset to train the target
model whose training data needs to be protected from mem-
bership inference attacks. The rest of the dataset contributes
to the testing set and the training set of the attack models.

Location. We design our classification task based on the
publicly available set of mobile users’ location “check-ins” in
the Foursquare social network, restricted to the New York
City and collected from April 2012 to February 2013.” The

5. http:/ /archive.ics.uci.edu/ml/datasets/ Adult

6. https:/ /www .kaggle.com/c/acquire-valued-shoppers-challenge

7. https:/ /sites.google.com/site/yangdingqi/home/foursquare-
dataset
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check-ins dataset contains 1,083 users, 227,428 check-ins
records and 251 location types. We filtered out users with
fewer than 150 check-ins and venues with fewer than 150
visits, which left us with 558 users and 120,850 records. In
our resulting location dataset, each record has 7 features rep-
resenting the venue, the category of venue, the coordinates
of users, timezone offset in minutes and the check-in time.

The purpose of our classification task is similar to the
purchase classification, and it is to predict the geosocial
type of an user by giving his or her location record. We first
cluster the location dataset into 2 classes, each representing
a different geosocial type. Then we use 5,000 randomly
selected records to train the model. Same with the purchase
dataset, the rest of the location dataset contributes to the
testing set and the training sets of attack models.

4.2 Experimental Setup

To evaluate the performances of MIASec, we conduct attack
and defense experiments on three types of machine learning
models: two models are constructed by MLaaS and one we
implemented locally. For all the platforms, we assume the
models as black boxes. We do not know the structure of the
model they create, nor the values of hyper parameters dur-
ing the training process.

MLaaS. The first cloud based machine learning service in
our study is Amazon Machine Learning. With this service,
even an amateur user, who is not familiar with machine
learning, can build a machine learning model and get pre-
diction results by simply uploading a dataset. In Amazon
ML, the user cannot choose the model types but can modify
a few parameters, including maximum number of passes over
the training data and L2 regularization amount. The former
determines the number of training epochs and the latter
tunes how much regularization is performed on the model
parameters in order to avoid overfitting. In our experi-
ments, we used the Amazon ML platform in the default set-
ting, in which the number of epochs is 10, and the L2 is 10-S.

The other cloud service that we used in our experiments
is bigML. Unlike the Amazon ML platform, the users of
bigML have the ability to manipulate a model’s attributes,
such as the machine learning model types, thresholds or
branch size of decision tree. In our experiments, we built all
classification models based on Deep Network classifier, and
use the same default parameters of each classifier.

Neural Networks. The Neural Network is a proven and
well-known technique that is popular in large-scale machine
learning. In our experiments, we use Theano library® to build
our local neural networks, and then train a series of neural
networks corresponding to different datasets. To ensure the
accuracy of our experiments, we train a set of neural net-
works on the same dataset, while keeping the hyper parame-
ters and the activation function of models consistent.

Data Settings. The training set and the test set of each vic-
tim model and attack model are randomly selected from the
respective datasets. In our assumptions, the attacker cannot
obtain any detailed record of victim model’s training data,
thus there is no overlap between the datasets of victim mod-
els and those of attack models[4]. However, the datasets
used for different attack models can overlap with each

8. http://deeplearning.net/software/theano/

other. Specifically, we set the training set size to 10,000 for
the purchase dataset and UCI Adults dataset. As for loca-
tion dataset, we set it to 5,000 in our experiments.

The key capacity of MIASec is to confuse the values of
important features while keeping the prediction accuracy
stable. To compare the information leakage with and with-
out MIASec, we train victim models both on original and
confused training data of UCI Adults, Purchase, Location
datasets respectively.

For the purchase dataset (with {2,5,10,30,50} classes),
we built victim models with both original and confused
dataset on all platforms, including Amazon, bigML, and
local neural networks, thus enabling us to compare the per-
formances of MIASec between different models. As for the
UCI Adults dataset, we run the experiments both on the
Amazon Machine Learning platform and local neural net-
works. The experiments on the Location dataset were run
both on the bigML platform and local.

In our experiments, for the victim models trained by local
neural networks, we train a machine learning model with
original data and adjust the parameters of our model to
achieve an acceptable prediction accuracy at first. Then we
leverage the same set of parameters of neural networks,
including the number of layers, the number of nodes, learning
rate and epochs, to get the new victim model re-trained with
our confused data. For the MLaa$S platforms, since the details
of the models and the training algorithms are hidden from the
data owners, it's impossible for us to adjust the models deeply.
Thus we evaluate the performance of MIASec with the default
settings of these platforms. We just upload the original data
and confused data to these online platforms, and obtain the
machine learning models trained by MLaaS automatically.

4.3 Performance of MIASec

The purpose of MIASec is to protect the training data of vic-
tim models from membership inference attacks. We evaluate
the performance of MIASec by comparing the success rates
of attack with and without our data confusion approach sep-
arately. In our evaluation experiments, we set the number
of members equal to the number of non-members, in order
to achieve the baseline accuracy to be 0.5.

We evaluate the performance of MIASec using the stan-
dard precision and recall metrics of membership inference
attacks. For clarity, we denote P,,;, and R,,;, as the precision
and recall of attacks using original data respectively, and
denote Psec and R,y s as the precision and recall of attacks
using confused data with MIASec respectively. We compare
the precision and recall variations of attacks to evaluate our
algorithm. Specifically in this paper, precision presents the
proportion of the records predicted as member of the train-
ing data that are indeed members. Recall presents the frac-
tion of the training records that the attackers can correctly
infer as members. In other words, recall measures the cover-
age of the attacks. A small recall represents that attackers
can hardly detect the members of training set from the test
set, and MIASec could protect the training data of an victim
model pretty well. In the following part, we will show the
effects of MIASec on defending membership inference
attacks with different datasets.

For the UCI Adults dataset, we evaluated our protection
methods on victim models trained using Amazon Machine
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Fig. 5. Empirical CDF of precision and recall of the membership inference attack on different machine learning platforms.
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Fig. 7. Empirical CDF of precision and recall of the membership inference attack on different machine learning platforms.

Learning and local neural networks. Fig. 5 shows empirical
CDF the precision and recall of the membership inference
attacks with the effects of MIASec. From the Fig. 5a we can
see that with our confused training data, the mean precision
of Amazon machine learning model was reduced by 12 per-
cent comparing with the model trained using original data
whose attack precision is about 0.592. The mean recall
decreases from 0.681 to 0.396 with the impact of MIASec. As
for the local models, Fig. 5b shows that the precision and
recall decreases 9.4 and 13.1 percent under the influence of
our confusion methods.

Fig. 6 shows the impacts of MIASec on membership
inference attacks among the victim models trained by
bigML platform and local neural networks. The precision of
most models is around 0.5, which is close to the baseline
accuracy. Nevertheless, the models trained using MIASec

process have a significant reduction of recall which is
11.7 percent. For the models trained by neural networks,
most recalls are close to 1.0, while by using the confused
data, the recalls decrease over 20 percent remarkably.

For the Purchase dataset, we evaluated the performance
of MIASec on both MLaaS and local platforms. Fig. 7 shows
the empirical CDF of attack precision and recall with and
without MIASec confusion process respectively. To be con-
sistent with experiments on other datasets, we cluster the
purchase data into 2 classes and then compare the precisions
and recalls between using confused data and using original
data. The experiment results show that the precision decr-
eases from 0.497 to 0.371, and the recall decreases from 0.613
to 0.468 under the impacts of MIASec. Fig. 7b shows the
impact of MIASec on models trained by Amazon ML. The
experiment results show that the precision decreases only
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Fig. 8. Precision of the membership inference attack against different purchase classification models trained on Amazon, BigML, and neural

networks.

by 0.01, while the recall decreases from 0.624 to 0.487. Fig. 7c
shows empirical CDF of the precision and recall of different
bigML models. The mean precision and recall of bigML
models decrease by 8.7% and 7 percent respectively.

4.4 Effect of the Number of Classes

In our adversary model, the number of output classes of the
victim model affects the extent of the model leakages. The
more classes, the more detailed prediction results are avail-
able to the attackers.

To evaluate the effect that the number of classes has on
the performance of MIASec, we train a series of victim
models using Amazon ML on the purchase dataset with
{2,5,10,30,50} classes. Fig. 8 presents the relationship
between the number of classes and the precision of mem-
bership inference attack, and meanwhile shows the relation-
ship between class numbers and the attack recall. From the
results we can see that as the number of classes increases, so
does the precision and recall of attacks no matter the train-
ing data is confused or not. In a multi-classification issue,
the models need to extract more distinctive features from
training data to be able to classify input records with a high
accuracy. Informally, the training data will match the mod-
els well, thus prediction outputs can vary a lot between the
input records from training set and test set.

With MIASec, the precision and recall of membership
inference decrease remarkably as show in Fig. 8. The preci-
sion and recall of multiple classification reduce respectively
by 11.4 and 16.7 percent in average. In extreme cases, the
precision can reduce from 0.779 to 0.593, and the recall can
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(a) UCI Adults, Neural Networks and BigML

decrease from 0.751 to 0.533. Our data confusion approach
can confuse the values of selected features which contrib-
utes to prediction accuracy of victim models enormously.
After confusing the dataset with MIASec, the value range of
an important feature is narrower than the original range,
that is to say, the value differences between the training
data and the test data become smaller than before. The per-
formance of test data on a machine learning model becomes
much closer to the training data.

4.5 Effect of the Number of Selected Features

To evaluate the effects of the number of selected features,
we train a series of victim models using local neural net-
work and BigML on two datasets. For each dataset, we first
sort the feature order according to the standard cross-
entropy values and accuracy deductions as discussed in
Section 3. Then we gradually increase the number of
selected features, choose the top few features as the selected
features, and confuse their values. We test the performance
of inference attacks on the models trained on the corre-
sponding confused data. The experiment results are shown
in Fig. 9.

From the results we can find that for the UCI Adults
dataset, when the number of selected features is less than 6,
the precision and recall of inference attacks are decreasing
dramatically with the feature number growing. Afterward,
the performance of the inference attacks declines slowly for
both the local neural networks and BigML models. The sim-
ilar deduction tendency also can be observed in the results
of Purchase dataset in Fig. 9b: when the number of selected

Accuracy

‘-——‘__ _—
01 Ty CaTIATIA
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(b) Purchase(2), Neural Networks and BigML

Fig. 9. The relation between the number of features and the performance of MIASec.
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TABLE 1
The Training and Testing Accuracy of
Different Dataset on Amazon ML Platform

Without MIASec With MIASec
Dataset Training Testing Training Testing
Accuracy | A y A y A Y
UCI Adults 0.869 0.860 0.868 0.857
Location 0.958 0.957 0.944 0.940
Purchase(2) 1.000 0.999 0.993 0.989
Purchase(5) 0.947 0.940 0.925 0.918
Purchase(10) | 0.885 0.862 0.831 0.796
Purchase(30) 0.816 0.752 0.763 0.687
Purchase(50) | 0.764 0.609 0.714 0.513

features is smaller than 7, the values of attack precision and
recall decline fast. After that, the performance degradation
of inference attacks gradually become slow, and the rates of
attack precision hardly decrease when the feature number
increases from 8 to 10.

The reason for such decline tendency is that the first few
selected features contribute the most information of the
data which is highly relative to the classification results. The
model trained with the confused data will output similar
prediction on different data records, and thus the attackers
can hardly determine whether a given record is in the vic-
tim model’s training set or not. Since the later chosen fea-
tures carry little information relative to the classification
task, confusing the values of these features will have a slight
impact on the prediction outputs of the victim model.

4.6 Prediction Accuracy with MIASec

MIASec modifies the values of some vital features in the
data, and the performance of models trained on modified
data must be different from that on the original data. To
quantify the effect that MIASec has on the prediction accu-
racy of machine learning models, we leverage the original
data and confused data respectively to train models on all
machine learning platforms. Meanwhile we guarantee that
all the models have the same parameters.

Table 1 shows the training and testing accuracies of mod-
els constructed using local neural networks for different
datasets. As can be seen from Table 1, for the binary classifi-
cation issues, the model trained using the data that is pre-
processed by MIASec has a similar testing accuracy with
the model trained with original data. Our protection
approach causes 2 percent degradation of testing accuracy
for the UCI Adults dataset. For the other datasets, the
decline of testing accuracy is less than 1 percent which is
acceptable in practical. With the number of classes increas-
ing, the impacts of MIASec are growing gradually. When
the number of class goes up to 50, the degradation of testing
accuracy reaches its maximum which is 6 percent.

Tables 2 and 3 show the accuracy of models trained by
different cloud machine learning services. We can get the
similar conclusion from these two tables as above: the more
classes the dataset has, the severer the impact of MIASec is.
However, there is still an important difference between the
models trained by cloud machine learning services and local
algorithms. The testing accuracy of cloud-based models

TABLE 2
The Training and Testing Accuracy of
Different Dataset on BigML Platform

Without MIASec With MIASec
Dataset Training Testing Training Testing
Accuracy Accuracy Accuracy Accuracy
UCI Adults 0.976 0.938 0.977 0.942
Purchase(2) 1.000 0.980 1.000 0.923
Purchase(5) 0.999 0.887 1.000 0.778
Purchase(10) 0.998 0.783 0.997 0.674
Purchase(30) 0.926 0.718 0.927 0.581
Purchase(50) | 0.873 0.658 0.874 0.554

decreases much more severely when dealing with multi-
classification issues as local models. As the number of classes
increases, the generalization ability of the MLaaS models is
relatively poorer than the local models. The degradation of
testing accuracy even reaches a value of 20 percent when the
classes of purchase dataset goes to 50.

There could be two reasons for why MLaaS impacts
machine learning models more and more severely with the
number of classes increasing. First, the amount of training
data is not sufficient to train an accurate machine learning
model. Second, the data confused by MIASec lose a part of
valid information. In MIASec, we use the cluster centers to
replace the original value of the selected features, and the
number of clusters of feature values is aways less than the
number of classes. That means the machine learning model
cannot obtain adequate information to construct a precise
model. To overcome this drawback, we can turn one multi-
classification problem into a combination of several binary
classification problems. As for why local models perform
better compared with cloud-based models, the reason could
be that the local models are not overfitted. The training and
testing accuracies of model trained using MLaaS have a
large difference.

4.7 Performance of MIASec on Other Models

In this section, we evaluate the performance of MIASec on
Random Forest, Xgboost and Support Vector Machine
(SVM) models. We compare the success rates of member-
ship inference attack against the models trained on the data
with and without using MIASec. In our experiments, we set

TABLE 3
The Training and Testing Accuracy of
Different Dataset on Local Neural Networks

Without MIASec With MIASec
Dataset Training Testing Training Testing
Accuracy | Accuracy | Accuracy | Accuracy

UCI Adults 0.869 0.860 0.868 0.857
Location 0.958 0.957 0.944 0.940
Purchase(2) 1.000 0.999 0.993 0.989
Purchase(5) 0.947 0.940 0.925 0.918
Purchase(10) 0.885 0.862 0.831 0.796
Purchase(30) | 0.816 0.752 0.763 0.687
Purchase(50) | 0.764 0.609 0.714 0.513
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Fig.

the number of members equal to the number of non-number
to guarantee the baseline of the attack accuracy to be 0.5
which is similar with the settings in Section 3.2. For clarity,
we still use P, and R, to represent the precision and
recall rates of inference attack against the model trained on
the original data, and use Pirasec and Ryrasec to represent
the precision and recall corresponding to the models built
with confused data.

From the results in Fig. 10, we can observe that, for the
Random Forest models, MIASec can reduce the precision of
membership inference attacks by 16.4 percent while the
attack against the Random Forest models trained on original
data can achieve a mean precision of 61.7 percent. The mean
recall of inference attack decreases from 71.9 to 43.7 percent
with the protection of MIASec. As for the Xgboost models,
Fig. 10b shows that the mean rates of attack precision and
recall decrease 24.1 and 27.3 percent respectively with the
effects of MIASec. MIASec achieves the best performance of
protection on the victim models constructed with SVM algo-
rithm. Specifically with MIASec, the mean attack precision
and recall are reduced by 32.7 and 37.6 percent respectively.

Besides, our experiments also show that MIASec can suc-
cessfully defend the membership inference attack on the
Random Forest, Xgboost and SVM models while not induc-
ing much performance loss of protected models. MIASec
results in only 2 percent degradation of Random Forest
model’s training accuracy, while the decline of testing accu-
racy of the same model is less than 4 percent. For the
Xgboost models, MIASec only involves less than 2 percent
of accuracy degradation of both training and testing set.
Nevertheless, MIASec caused a large degradation of the
training and testing accuracies of the SVM model which are
around 9 percent. The reason is that the Xgboost and Ran-
dom Forest models have more powerful learning capabili-
ties than SVM models. Even the training data is modified,
the Random Forest and Xgboost models can achieve high
training and testing accuracies which is close to that of the
original models without MIASec.

5 RELATED WORK

5.1 Membership Inference Attacks

Membership inference attacks have been successfully
launched in different domains. Homer et al. [10] propose
the first membership inference attack on genomic data.
Thereafter Backes et al. [11] generalize this attack to other

(b) UCI Adults, Random Forest

(c) UCI Adults, SVM

10. Empirical CDF of precision and recall of the membership inference attack on different machine learning models.

types of biomedical data. Lately the aggregate mobility
traces are also proved to be vulnerable to membership infer-
ence attacks [12], where the attack is modeled as a distin-
guishability game. They also evaluate different defense
mechanisms, e.g., differential privacy, to estimate the mem-
bership inference risks.

Membership inference attacks against machine learning
models is recently proposed in [4], where the shadow model
training is devised, aiming at mimicking the target model’s
behavior so as to generate training data for the attack model.
Salem et al. [5] further point out that, by only relying on the
posterior’s entropy, one pair of shadow model and attack
model is sufficient to perform an effective attack. Following
this line, several other studies have been proposed from dif-
ferent perspectives on membership inference attacks against
machine learning models [13], [14], [15], [16], [17], [18].

5.2 Attacks on Machine Learning Models
Besides membership inference attacks, an attacker with some
background knowledge can launch other types of attacks,
which try to infer different information of the machine learn-
ing models. Fredrikson et al. [19] present the model inversion
attacks (i.e., to infer the missing attributes of the victim) in
biomedical data setting. This kind of attacks is later gene-
ralized to a broader scenario in e.g., face recognition [20].
In [21], Tramer et al. propose model stealing attacks against
machine learning models, aiming at stealing the model’s
learned parameters. One defense method against model
stealing attacks was proposed recently by Juuti et al. [22].
Recent studies on adversarial examples [23], [24], [25], [26]
show cases in which attackers successfully fool a trained
machine learning model to misclassify the data by adding a
small amount of noise to the data. This may bring about
severe risks in many applications such as autonomous driv-
ing, face/voice recognition, et al. Meanwhile, adversarial
examples can also contribute to help protect users’ privacy
in online social networks [27], [28], [29].

5.3 Privacy-Preserving Machine Learning

Another relevant line of work is privacy preserving machine
learning techniques. Mohassel et al. [30] present efficient
protocols for training linear regression, logistic regression,
neural networks in a privacy-preserving manner. Bonawitz
et al. [31] propose a multi-party computation based proto-
col for secure aggregation over high-dimensional data for
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distributed machine learning. Homomorphic encryption is
also employed to guarantee both input and output private
for three machine learning classifiers, namely hyperplane
decision, Naive Bayes and decision trees [32]. On this basis,
privacy-preserving Random Forest classifier is further
devised for medical diagnosis [33]. Besides, there are some
other recent studies on security and privacy in machine
learning, e.g., [34], [35], [36], [37].

6 CONCLUSION

In this paper, we proposed MIASec which can confuse
the important features of the training data, while keeping
the model’s accuracy stable. Through narrowing the value
ranges of the data’s sensitive features, MIASec can decre-
ase the differences of a machine learning model’s output
between different data records. The smaller prediction differ-
ences among different data, the less information we can
obtain from the prediction results. Thus MIASec can increases
the difficulty for attackers to infer whether a record is in the
training data or not. We empirically evaluate MIASec on
machine learning models trained by local neural networks
and MLaaS. Using real-world data and classification tasks,
the results show that MIASec can defend the membership
inference attacks effectively. Besides, even these inference
attacks adopts different strategies, MIASec could effectively
reduce the inference precisions of these attacks as long as
these attackers need to find the dissimilarities between the
training set and testing set’s prediction results.

As for the impact of MIASec on the prediction accuracy,
the accuracies of machine learning models trained with raw
data and MIASec confused data are really similar to each
other when the data has less classes. In an extreme case, the
accuracies between original and re-trained machine learn-
ing models only have a difference of 0.1 percent. With the
number of classes increasing, the impact of MIASec is also
expanding while the accuracy loss is still acceptable.
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