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Abstract— In recent years, data has become the new oil that
fuels various machine learning (ML) applications. Just as the
oil refining, providing data to an ML model is a product of
massive costs and expertise efforts. However, how to protect the
intellectual property (IP) of the training data in ML remains
largely open. In this paper, we present MeFA, a novel framework
for detecting training data IP embezzlement via Membership
Fingerprint Authentication, which is able to determine whether
a suspect ML model is trained on the to be protected target data
or not. The key observation is that a part of data has a similar
influence on the prediction behavior of different ML models.
On this basis, MeFA leverages membership inference techniques
to extract these data as the fingerprints of the target data and
constructs an authentication model to verify the data’s ownership
by identifying the obtained membership fingerprints. MeFA has
several salient features. It does not assume any knowledge
of the suspect model except for its black-box prediction API,
through which we can merely get the prediction output of a
given input, and also does not require any modification to the
dataset or the training process, since it takes advantage of the
inherent membership property of the data. As a by-product,
MeFA can also serve as a post-protection to verify the ownership
of ML models, without modifying the training process of the
model. Extensive experiments on three realistic datasets and
seven types of ML models validate the effectiveness of MeFA,
and demonstrate that it is also robust to scenarios when the
training data is partially used or preprocessed with representative
membership inference defenses.

Index Terms— Training data authentication, intellectual prop-
erty protection, membership inference attack, membership fin-
gerprint, machine learning model.
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I. INTRODUCTION

IN RECENT years, the explosive growth of data has
promoted the application of machine learning (ML) in

various fields, ranging from natural language processing [1]
to computer vision [2]. As is known to all, it is a non-
trivial task to obtain the data that can be used to train ML
models from the raw data, especially at an industrial level.
Specifically, providing the training data is a product of massive
costs and expertise efforts, including data collection, data
annotation, and data pre-processing. However, it is reported
that attackers can illegally obtain the data through multiple
advanced techniques [3]–[6]. With the reduction of technical
barriers, they can use the unauthorized data to train an ML
model to make illegal profits. Therefore, in order to protect
the data owner’s legitimate benefits, it is necessary to protect
the intellectual property (IP) of the data, i.e., to externally
verify the ownership of the data.

Previous IP protections in ML field mainly focus on pro-
tecting the IP of the trained deep neural networks (DNN)
model and verifying the model creator’s identity [7]–[11].
These works consider that the model’s IP corresponds to the
ownership of training data, cost of computing resources, and
experience of ML expertise. However, if the ML model is
trained on a dataset that the trainer has no permission to use,
the IP and ownership of this dataset will be violated. In this
case, existing IP protections can only verify the ownership of
an ML model, but cannot establish a clear association between
an ML model and the training data that needs to be protected.
How to verify the ownership of the target data with respect to
a suspect ML model remains largely open.

In this paper, we bridge this gap by presenting MeFA,
a novel framework for training data IP verification via Mem-
bership Fingerprint Authentication, which is able to determine
whether a suspect ML model is trained on the (to be protected)
target data. We consider the real-world scenario where the
suspect ML model is typically deployed as a black-box to
keep the model internals secret, in the way as the widely
deployed machine learning as a service (MLaaS) platforms
such as Google AI,1 Amazon ML2 and Microsoft AzureML.3

Therefore, we have no knowledge about the model (neither

1https://cloud.google.com/ai-platform
2https://aws.amazon.com/machine-learning
3https://azure.microsoft.com/en-us/services/machine-learning/
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the structure or parameters of the model, nor the training
algorithm), but only the access to the model’s input-output
prediction API.

Central to the MeFA’s idea is the fact that during the ML
model’s training process, the data record in the training set
influences the prediction behavior of the ML model, in order
to fit the model to the whole training data. As a consequence,
different training sets naturally bring in the dissonance of the
ML models’ prediction behaviors, whereas the ML models
trained on the same training set should have similar predic-
tion behaviors. By measuring the similarity of the prediction
behaviors between the suspect model and the model trained on
the target data, MeFA can stand a good chance to discriminate
whether the target data is involved in the training of the suspect
model, which in turn leads to the ownership verification of the
target data.

Although the basic idea sounds simple, MeFA confronts
with two major technical challenges. The first one is how
to measure the similarity of prediction behavior, since it is
non-trivial to compare the prediction outputs of all records in
the target data, due to limited number of queries and large
computing overheads. Motivated by the recent advances in
membership inference attacks (MIA) [12], [13], which can
determine whether a data record was used for training a
given ML model, we find that part of the target data has
remarkable and consistent influence (in terms of membership
sensitivity) on the predictions of different types and structures
of ML models trained on them. Therefore, we propose to select
multiple records, which have the above-mentioned influence
among different models, as the membership fingerprints of the
target data. By comparing the prediction results of the selected
membership fingerprints obtained from the suspect model and
the model trained on the target data, we can thus measure the
similarity of prediction behaviors of these two models.

The second challenge is how to identify the consistent
influence from the predictions of different ML models and
find the universal membership fingerprints from the target
data, as in practice we have only the black-box access to the
suspect model with few information about its training settings.
Considering the fingerprints are sensitive to the types and
structures of ML models [14], directly using the fingerprints
generated by existing MIA methods can only identify the
influence of the record in the target data on one particular
model, but would fail to cross different models. To address
this challenge, we propose to first train two sets of reference
models with commonly used training algorithms and settings,
on the target dataset and an external dataset,4 respectively.
Then we construct one universal authentication model with the
prediction of all reference models, and select from the target
data the records that are most sensitive to all the reference
models as the membership fingerprints based on the detection
results of the authentication model. The authentication model
along with the membership fingerprints can further be used to
facilitate the data IP protection.

4The external dataset has the same format and value ranges of each feature
with the target dataset, detailed in Section IV-B.

MeFA has several salient features. First, MeFA does not
make any modifications to the target data or the training
process but takes advantage of the inherent membership prop-
erty of the data, which maintains the integrity and utility of the
data. Second, MeFA is a model-agnostic framework that can
be performed on any type of ML model, without preknowledge
of the suspect model’s type, structure, parameters, and training
process, except for its black-box prediction API. Besides,
MeFA is also able to verify the ownership of ML models (not
limited to DNN models). We empirically find that membership
fingerprints have a great influence on the model’s prediction
(i.e. the contribution of membership fingerprints to an ML
model’s prediction involved in the model’s training process).
By detecting the presence of such an influence, MeFA can
facilitate the IP verification of ML models.

Our major contributions are summarized as follows.

• We present a novel framework for detecting training data
IP embezzlement, and show for the first time how mem-
bership inference techniques can be adopted to construct
the fingerprints of the target data for its IP verification.

• We construct an authentication model that can verify the
data’s ownership by inferring the membership property
of the obtained membership fingerprints with respect to
a black-box ML model.

• We extensively evaluate MeFA on three realistic datasets
and seven types of ML models. The results validate the
effectiveness of MeFA, and demonstrate that it is also
robust to scenarios when the training data is partially used
or preprocessed with representative membership inference
defenses.

The remainder of this paper is organized as follows.
Section II overviews some related works. Section III intro-
duces the threat model. Section IV describes the design of
MeFA, followed by the extensive performance evaluation in
Section V. Finally, Section VI concludes this paper. The code
of MeFA has been released for reproducibility purposes.5

II. RELATED WORK

A. DNN IP Protection

DNN models suffer from illegal copy, redistribution,
or embezzlement without the model owner’s permission, and
their IPs need to be protected. Therefore, many DNN IP
protections have been proposed [10], [15], which generally
fall into the following three classes.

1) Watermarking-Based Protection: In these methods, a set
of watermarks are embedded into the model at its train-
ing or fine-tuning phase [16], [17], and the protections can
determine the model’s IP by checking the existence of the
model watermarks. For example, Uchida et al. [18] propose
the first DNN IP protection method, which trains the model
with an additional regularization loss to embed the watermark
to the model weights. This protection is only applicable
to the white-box model that can fully access the model’s
parameters. Then Rouhani et al. [19] propose a black-box
protection technique that embeds the watermark into the

5https://www.dropbox.com/s/5j59vbh6qil4hwe/MeFA-Code.zip?dl=0
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probability density function of the activation set of each
layer. The embedded watermark can be triggered by a cor-
responding set of input to remotely verify the IP of DNNs.
Besides, Kuribayashi et al. [20] propose a quantifiable water-
mark embedding approach, which could reduce the magnitude
of the weight changes. Different from the above schemes car-
rying a watermark by model weights, Wu et al. [21] introduce
a watermarking framework that embeds the watermark into
the model’s outputs.

2) Backdoor-Based Protection: These methods leverage the
backdoor attacks [22], [23] to make the DNNs output a
specified label when a specific backdoored input arrives.
Then the predictions on the inputs are compared with the
assigned labels to authenticate the model’s IP. For instance,
Adi et al. [24] and Zhang et al. [7] leverage the backdoor
attack to change the decision boundary of the protected model,
which can deliberately output specific (incorrect) labels for a
particular set of inputs. Then these specific input-output pairs
can be used to verify the protected model’s IP. Li et al. [8]
use an encoder to combine the ordinary samples and the
exclusive logo together to generate multiple modified samples.
By infusing these samples into the protected models with
specified labels, they can leave a set of backdoors as the
basis for the model IP claim. It has been validated that
backdoor-based protections would be simply breached through
model compression/distillation and model pruning [25], [26].
To mitigate this issue, Li et al. [8] propose a backdoor
embedding method that can only be inserted during the initial
training of the model, and Jia et al. [27] propose Entangled
Watermarks, in which the embedded backdoors are entangled
with the legal data of the model.

3) Fingerprint-Based Protection: Recent works have
demonstrated that the “fingerprint” of the DNNs can also be
used for IP protection. Chen et al. [28] propose DeepMarks
that allows the owner of DNNs to embed a unique fingerprint
within the weights of the model itself. Merrer et al. [29] take
advantage of adversarial examples which are very close to the
decision boundary of the model as the fingerprint to verify
the model’s IP. Cao et al. [11] find some data records near
the decision boundary of the model, and utilize these records
of the protected model to fingerprint the model and track its IP.
Maini et al. [30] make use of the distance of multiple training
records to the decision boundary as the watermarks to verify
the model’s IP. By aggregating the signals of multiple records,
the verification of model IP can succeed with a high accuracy.
A recent work [14] uses MIAs to generate the fingerprint
of a model for its IP protection. It trains a membership
discriminator along with the protected model simultaneously.

It is observed that the watermark-based and backdoor-based
protections require modifying the training and fine-tuning
process of the model, while the fingerprint-based protection
requires the training data of the protected model, or internal
access to the model’s parameters. However, the owner of the
suspect model often only provides the black-box interface to
the users. In the scenario of training data’s IP protection,
we cannot manipulate the training and fine-tuning process
of the suspect model, which will invalidate the watermark-
based and backdoor-based protections. In addition, the existing

protection methods usually are targeted at protecting the IP of
one certain DNN model. In our scenario, the adversary could
use multiple algorithms and settings to train his model on the
target data, and coupled with the randomness of the training
process, the fingerprint-based protection can hardly produce a
fingerprint that exactly matches the adversary’s model. Against
this background, we present MeFA which does not modify the
target data or the training process of the protected model and
can generate universal fingerprints for multiple ML models.

B. MIA Against ML Models

MIA against ML models was first studied by
Shokri et al. [12]. The purpose of MIA is to determine
whether a given record was used to train an ML model [31].
It can be formulated as:

A( f, x)→ In/Out

where f is the ML model, x is the given record, and A
represents the methodology of MIA. The label In means that
x belongs to f ’s training set Dtrain while Out means not.

The basic idea of MIA is straightforward: since each record
in the training set influences many of the model parameters
to minimize its contribution to the training loss, the trained
ML model often behaves differently on the data that they were
trained on versus the one that they “see” for the first time [12],
[13], [32], [33], and such the prediction difference can be
reflected in the prediction probability of f . By constructing
a binary classifier, the MIA attacker can separate the member
records from the non-members.

In the first MIA work [12], Shokri et al. construct mul-
tiple shadow models with the same structure as the victim
model and derive the shadow model’s outputs and the ground
truth of membership, to construct multiple attack models.
Then Salem et al. [32] propose ML-Leaks and show that
it is possible to achieve the resemble attack performance
with only one shadow model, rather than multiple shadow
models. Instead of training the shadow model, Liu et al. [34]
leverage the generative adversarial network (GAN) to train a
mimic model. Except for imitating the prediction behavior,
some works use other information of the victim model to
perform MIAs, including the training loss [35], model parame-
ters [36], model gradients [37], and output distributions [13].
Recently, some researchers focus on performing MIAs with
the minimum information of the victim model, and several
works have been proposed that only require the predicted
label of the victim models [33], [38]. Hui et al. [13] propose
BLINDMI which releases the reliance on the shadow models
by probing the target model and then inferring the membership
directly from the probing results via differential comparisons.
Saeidian et al. [39] leverage information theory to prove the
risk of membership privacy in ML models theoretically.

Essentially, the problem of data IP protection aims to verify
the connection between the target data and the suspect model.
Existing MIA studies point out that, if a record takes part in
the training process of an ML model, the training algorithms
aim to minimize this record’s contribution to the training loss.
Thus this training record would leave its unique influence
on the model’s parameters that can be reflected through the
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Fig. 1. The key difference between existing MIAs and MIA in MeFA.
Existing MIAs attempt to find the prediction differences between the training
and testing data on the same model, while the MIA in MeFA tries to extract
the prediction similarities among different models trained on the target data.

model’s prediction, especially the prediction of itself. As such,
MIA can infer this record’s membership property with the
model’s prediction on this record, regardless of the type
and the structure of the model. Motivated by this property,
we propose to leverage the MIA results of the target data
against different types of models to examine the similarity of
prediction behavior for the training data IP protection.

What is worth being emphasized is that, existing MIAs can
only breach the membership privacy against one certain model,
while we need to screen out the records that have remarkable
and consistent influence across multiple types and structures
of ML models from the target data. Therefore, we design an
MIA that can identify such records based on the prediction
results of ML models trained on the target data, without
requiring interaction with the suspect model. With the help
of our proposed MIA, MeFA can select these records from
the target data, which are further used to verify the IP of
the suspect model’s training data. The key difference between
existing MIAs and the MIA in MeFA is shown in Fig. 1.

III. THREAT MODEL

We consider a dataset owner who owns the IP of a dataset
(i.e., the target data), and an attacker who can illegally obtain
this dataset through multiple ways and construct an ML model
on it (c.f. Fig. 2). Our threat model is described as follows.

Attacker’s Goal: The attacker’s goal is to misappropriate
a dataset that he does not have the ownership, and to train
an ML model on this dataset to obtain economic benefits or
improve the quality of service of his own models.

Attacker’s Capability: An attacker may derive and steal
the target data through multiple ways. A prominent way is
to hack into a data server or trade through the dark web.
Perhaps less directly, the attacker could also reconstruct the
target data through abusing the legitimate ML models trained
on it [40], [41]. Finally, the attacker may directly access the
target data. This may happen when the data owners expect to
open-source their data for academic purposes but disallow the

Fig. 2. Illustrative threat of dataset IP in ML.

commercial usage. Then the attacker can train an ML model
on the unauthorized dataset on their local devices. Even for
the attackers without expertise in ML, they can use the MLaaS
to construct the ML model and release its prediction API for
economic benefits.

Suspect Model: We consider a practical scenario in which
the suspect model S is deployed as a black-box, and the
internal details of the model, including the model struc-
ture/parameters, as well as the training algorithm and training
settings, are kept secret to users. Given an input record x,
the suspect model only outputs the prediction probability
vector [S1(x),S2(x), . . . ,SC (x)], where Sc(x) represents the
predicted probability of class c, and C is the number of classes
that S can take. Note that in some cases, the suspect model
may restrict the output to the top-k probabilities to evade the
legality detection.

IV. DESIGN OF MEFA

A. Overview

The tasks of MeFA can be briefly formalized as follows:
given the target data Dtgt whose IP needs protection and a
black-box query access to the suspect model S, MeFA first
identifies the membership fingerprints of Dtgt , then infers the
membership property of the fingerprints concerning S, and
finally determines whether Dtgt is used to train S according
to the inference results. To this end, MeFA mainly involves
the following two steps (c.f. Fig. 3).

1) Membership Fingerprint Selection: In order to extract
the membership fingerprints of Dtgt , MeFA first trains two
sets of reference models on the target data and the external
dataset, respectively. Then MeFA utilizes the reference mod-
els’ prediction on Dtgt to train an authentication model A.
By leveraging A, MeFA can select from Dtgt the records on
which all reference models have similar prediction behaviors
as the membership fingerprints.

2) Membership Fingerprint Authentication: In this step,
MeFA first queries S with the membership fingerprints and
obtains the corresponding prediction results, which are further
inputted to A to infer the membership property of the fin-
gerprints with respect to S. Finally, according to the inference
results, MeFA can determine whether there exists a connection
between Dtgt and S.

B. Membership Fingerprint Selection

1) Reference Models Construction: Since ML models
trained on the same dataset have similar prediction behaviors,
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Fig. 3. The framework of MeFA. In membership fingerprint selection step, MeFA first trains a set of reference models M+ref (resp. M−ref ) on the target data

Dtgt (resp. the external dataset Dext). Then MeFA trains an authentication model A on Y+ref and Y−ref that are obtained from the reference models with Dtgt .
MeFA uses A to select the fingerprints Dfp from Dtgt (c.f. Algorithm 1). In membership fingerprint authentication step, MeFA inputs the fingerprints to the
suspect model S and gets the predictions Ys , based on which MeFA can finally determine whether S is trained on Dtgt with the inference score of YS on A.

the key idea of MeFA is comparing the similarity of prediction
behavior of different models to verify the IP of a suspect
model’s training data. Although the idea is simple, it is difficult
to extract and compare the similarity of ML models’ prediction
behaviors. It seems that directly comparing the prediction
probabilities of S with that of the model trained on Dtgt is
one feasible solution (we consider this method as a comparing
baseline in the evaluation section). However, there are distinct
differences in the prediction probabilities of different types of
ML models (e.g. the prediction difference exists between a
decision tree model and a linear regression model). Moreover,
since the suspect model is usually deployed as a black-box,
we cannot train an ML model that has the same type with
the suspect model S, and the above solution cannot achieve a
high authentication accuracy.

Since each different training record has a different influence
on the ML model and the objective of different ML algorithms
is to fit the ML model to the training data, the influence of a
training record should be similar or consistent across different
models. Naturally, a part of the training data will have a
significant influence on the prediction behavior of the models
trained on it. With or without this part of the data participating
in the training process, the prediction output of these models
will have a significant difference. As a consequence, we can
make use of a part of the target data records that are significant
for the model behavior as the fingerprints to protect its
ownership. Inspired by the study of MIAs [32] whose goal
is to distinguish between the data used and not used to train
a given model, the more influence a training record has on
the ML model’s behavior, the easier the membership property
of this record can be detected by MIAs. Therefore, we can

leverage the MIA technique to help us select the fingerprints
from the target data.

To find the universal fingerprints of the target data that are
valid for multiple types of models, we design a novel MIA
that is targeted at multiple models simultaneously. According
to the task of the target data, we select a set of commonly used
learning algorithms to train multiple reference models on Dtgt ,
yielding a set of reference models M+

ref (c.f. the orange dotted
block in Fig. 3). For instance, concerning the classification
dataset, we choose DNN, random forest and support vector
machine to train the reference models.

However, with mere M+
ref , we cannot compare the dif-

ference of the model prediction behavior with and without
training on Dtgt . Therefore, we also need a set of models
not trained on Dtgt , to help us analyze the influence of each
record in the target data on the model’s behavior and select
the fingerprints for Dtgt . To address this issue, we involve
an external dataset Dext that has the same format and value
ranges of each feature with Dtgt . We use the same training
settings of M+

ref to construct another set of reference models
M−

ref (c.f. the green dotted block in Fig. 3).
The external dataset Dext can be obtained through var-

ious methods. For example, we can add random noise to
the target data Dtgt and get a noisy version which can be
considered as the external dataset Dext . In some situations,
we may get the statistical information about the population
from which Dtgt was drawn. Then we can generate Dext by
independently sampling the data records based on the statistics.
In addition, with the development of the data generation
technique, we can construct an auto-encoder or a generative
adversarial network on Dtgt to generate a part of synthetic
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Algorithm 1 Membership Fingerprint Selection
Input: Dtgt, Dext , a set of algorithms alg
Output: Dfp,A
1: M+

ref ,M−
ref ← ∅

2: Y+ref , Y−ref ← ∅
3: for each alg do
4: ftgt ← Train(alg, Dtgt)
5: fext ← Train(alg, Dext)
6: M+

ref ←M+
ref ∪ ftgt

7: M−
ref ←M−

ref ∪ fext

8: Ytgt = ftgt(Dtgt)
9: Yext = fext(Dtgt)

10: Y+ref ← Ytgt ∪ Y+
11: Y−ref ← Yext ∪ Y−
12: end for
13: Label y+ ∈ Y+ref with “In”, y− ∈ Y−ref with “Out”
14: Train authentication model A with Y+ref and Y−ref
15: Dfp = Fingerprint Filtering(M+

ref ,A, Dtgt)
16: return Dfp,A

data, as in [42], [43], which can also serve as the external
data.

2) Authentication Model Construction: Given the two sets
of reference models M+

ref and M−
ref , we need to select the

record in Dtgt whose membership property is easy to be
determined via MIAs. Then we can construct an authentication
model based on the prediction of M+

ref and M−
ref .

Specifically, the construction process of the authentication
model A is as follows. For all data x ∈ Dtgt , we compute the
prediction vector y+ (resp. y−) by querying each model in
M+

ref (resp. M−
ref ) with x. We label y+ with “In” and y− with

“Out”. In MeFA, “In” means that the prediction is derived from
the reference model trained on the target data, while “Out”
has the opposite meaning. Next, we integrate all (y+, In) into
one dataset Y+ref , and get Y−ref in the same way. Thereafter,
we combine Y+ref and Y−ref together as the training set for
our authentication model. Note that our attack is essentially a
binary classification task, and thus we can make use of any
classification algorithm to construct our authentication model.
Our method is independent of the specific method used for
authentication model training.

For the trained authentication model, we can feed it with
a prediction vector of a model and obtain the probability of
how it believes the record corresponding to this vector is the
training data of the reference models M+

ref . In the next step
of MeFA, we use this authentication model to authenticate the
ownership of target data with respect to the suspect model.

3) Fingerprint Selection: In this paper, MeFA detects the
embezzlement of the target data in accordance with the
membership property of the records in Dtgt with respect
to the suspect model. Therefore, the authentication model
A essentially corresponds to the attack model for MIAs.
As required by the MIAs [12], [13], [32], we need to get the
prediction results of S on Dtgt which are then used to derive

Algorithm 2 Fingerprint Filtering

Input: M+
ref ,A, Dtgt

Output: Dfp

1: k = 0
2: Dfp← ∅
3: for each ftgt ∈M+

ref do
4: k = k + 1
5: Dk

fp ← ∅
6: for each x ∈ Dtgt do
7: y = ftgt (x)
8: if A(y) = “In” then
9: Dk

fp← Dk
fp ∪ x

10: end if
11: end for
12: end for
13: Dfp = D1

fp ∩ D2
fp ∩ . . . ∩ Dk

fp ∩ . . .
14: return Dfp

the detection results with the authentication model. However,
the owner of S can easily detect the exception of massive
queries. Besides, for the sake of saving our resources, it is
not a wise choice to query all the records in Dtgt . According
to MIAs [12], [32], the larger influence the record has on the
model’s prediction, the more sensitive to MIA this record is.
In addition, when analyzing the prediction of A on the Y+ref ,
we observe that only a small number of records are classified
as “In” by A. Therefore, we can select the records that have a
significant impact on all the reference models (M+

ref ), i.e., the
records which satisfy A(F(x)) = “In” for each model, as the
membership fingerprints (denoted as Dfp). The selecting flow
of the membership fingerprint is outlined in Algorithm 1.

C. Membership Fingerprint Authentication

Now that we have the membership fingerprints Dfp of the
target data Dtgt , the next step is to detect whether the suspect
model S infringes the IP of Dtgt .

To measure the membership property for a set of records,
we propose a metric Inference Score which reflects how
possible Dfp belongs to the training set of the suspect model S:

Inference Score = Ex∼Dfp[A(S(x))]
with its range in [0, 1]. If S is trained on the target data
Dtgt , the inference score derived from A should be close to 1;
otherwise, it will be close to 0.

By comparing the obtained inference score with a pre-
determined threshold, we can easily determine whether S
embezzles the target data by comparing with a pre-determined
threshold. Therefore, we need to find a proper threshold θthr

for the fingerprint authentication. Since we have two sets of
reference models that are respectively trained on the target
data and external dataset, we can determine θthr according to
the Inference Score A(M+ref (Dfp)) and A(M−ref (Dfp))

By comparing A(M+ref (Dfp)) with A(M−ref (Dfp)), we find
that a hard threshold 0.5 is not effective, and from the experi-
ment results, we notice that θthr fluctuates with the similarity

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 16,2022 at 00:23:56 UTC from IEEE Xplore.  Restrictions apply. 



1030 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

and complexity of Dtgt and Dext . This indicates that θthr is
not a fixed value, and should be determined by A(M+ref (Dfp))

and A(M−ref (Dfp)) when confronting different datasets. Here,
we provide two feasible methods to determine θthr :

1) Traversing θthr to find a value that maximizes the metric:
arg max

θthr

Metric(A(Mref (Dfp)), Ytrue)

where A(Mref (Dfp)) is the membership prediction (“In”
or “Out”) and ytrue is the true membership label. Here,
the metric can be the accuracy, F1 score, etc, which goes
up when A(Mref (Dfp)) and ytrue are more approaching.

2) Simply setting θthr at the average of A(M+ref (Dfp)) and
A(M−ref (Dfp)). According to MIA, a model predicts
more confidently on its training data. This results in a
higher A(M+ref (Dfp)) and a lower A(M−ref (Dfp)) since
Dfp is the training data of M+ref . Hence, the average of
them is a boundary that separates M+ref and M−ref .

At the end of MeFA, by comparing the determined θthr and
the inference score of membership fingerprints, we can identify
the ownership of the suspect model’s training data. If the
inference score is higher than the pre-determined threshold,
MeFA will determine the suspect model has embezzled the
target data. Otherwise, we will regard the suspect model as an
innocent model.

V. PERFORMANCE EVALUATION

A. Experiment Setup

1) Datasets: We use three datasets commonly used in the
previous works of MIAs [12], [32], [37] to evaluate the
performance of MeFA.

UCI Adult:6 The task of Adult dataset is to predict
whether a person’s income is over $50K a year. It includes
48, 842 records with 14 features, such as age, education, and
gender.

MNIST :7 It is a handwritten recognition dataset that con-
tains 10 classes of handwritten digits from 0 to 9. MNIST
contains 70, 000 digits formatted as 28 × 28 gray images.
The value of each pixel in the image is limited to 0 ∼ 255.

Purchases:8 This dataset is based on Kaggle’s “acquire
valued shoppers” challenge dataset that contains shopping
histories for thousands of individuals. Following [12], [32],
[37], we use K -Means algorithm to cluster the dataset into
{2, 10, 20, 50, 100} classes. We use Purchase dataset mainly
to evaluate the impact of the number of classes on the
performance of our framework.

For each dataset, we randomly select 10, 000 records as
the target data Dtgt , while randomly selected 10, 000 records
from the rest serve as the external dataset Dext and the
remaining as the second external dataset D′ext for training a
part of suspect models. It is worth noting that there is no
overlap between Dtgt and Dext ; however, the datasets used
for training reference models in M+re f and M−re f can overlap

6http://archive.ics.uci.edu/ml/machine-learning-databases/adult/
7http://yann.lecun.com/exdb/mnist/
8https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data

with each other. In addition, for every dataset, we perform
the data splitting operation multiple times and obtain different
target/external splits. Then in our experiment section, we eval-
uate the performance of MeFA with respect to different data
splits and report the averaged evaluation results.

2) Suspect Models: To demonstrate the universality of our
framework, we evaluate MeFA on seven types of suspect
models: logistic regression (LR) with the penalty of L1 and L2,
support vector machine (SVM), random forest (RF), XGBoost
(XGB), decision tree (DT) and DNN. For DNN models, we set
the model architecture as a combination of one input layer,
two hidden layers, and one output layer. It is worth noting
that for different datasets, we set different numbers of hidden
units in the two hidden layers. Specifically, for Adult dataset,
the numbers of hidden units are 150 and 32, respectively,
while for Purchase dataset, the numbers are 840 and 180,
respectively. As for MNIST dataset, we follow the model
architecture shown in its original source,9 where we use the
architecture with two hidden layers (500 and 150 hidden
units, respectively) to construct suspect models. For all deep
models, we use Cross Entropy to calculate the training loss
and set the learning rate of stochastic gradient descent (SGD)
to 0.01. For each type of models, we use 10 different training
settings to construct 10 sets of suspect models, and each set
contains 2 models trained on the target data Dtgt and the
second external dataset D′ext , respectively. In our experiments,
we regard the suspect models trained on Dtgt , which accounts
for half of all suspect models, as the models that indeed
embezzle the target data. As a consequence, the baseline
accuracy of the authentication is 0.5 which equals the effect
of the random guess.

3) Reference Models: We also choose the above seven types
of ML algorithms to train our reference models. For each type
of algorithms, we use the same training settings to construct
2 models on the target data Dtgt and the external data Dext ,
yielding the reference models corresponding to M+

ref and
M−

ref , respectively. Then we leverage these 7 × 20 models
to identify the membership fingerprints for the target data.

4) Metrics: The task of MeFA essentially is a binary
classification problem. Thus we use the standard Precision and
Recall metrics to measure the performance of MeFA. Precision
represents the fraction of suspect models detected by MeFA
that indeed embezzle the target data. Recall represents the
fraction of the models that embezzle the target data that are
correctly detected.

5) Baselines: We present two baselines for comparisons.
The first baseline directly leverages all records in the target
data Dtgt as the membership fingerprints; the second one sim-
ply compares the prediction probabilities of the suspect model
S with those of the reference models. We use KL-divergence
to measure the prediction similarity between the suspect model
and the reference models. Then we determine whether S
embezzles the target data according to the training data’s
source of the reference model which has the most similar
prediction with the suspect model.

9http://yann.lecun.com/exdb/mnist/
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Fig. 4. Probability density function (PDF) of the inference score with respect to different datasets. For better observation, we use Gaussian kernel to process
the original distribution.

TABLE I

COMPARISONS OF AUTHENTICATION PRECISION

B. Threshold Identification

The threshold θthr is a vital parameter that MeFA relies on
to determine the final authentication results, so we first show
how to set θthr according to the difference of inference score
derived from the reference models trained on the target and
external data. In our experiments, we assume that the target
data embezzlement occurred if Inference Score > θthr . To find
a preferable θthr , we choose an increasing rate of 0.01 and vary
it from 0 to 1 thus getting a batch of authentication accuracy
among the reference models with different θthr . Among these
values of authentication accuracy, the one that brings the
maximal value is the final identified θthr .

From Fig. 4 we can see that for each dataset, the inference
score of membership fingerprints derived from M+

ref and M−
ref

are quite different. The average inference score derived from
M+

ref and M−
ref are 0.836 and 0.574 for Adult, 0.912 and

0.559 for MNIST, 0.995 and 0.256 for Purchase (50), and
0.998 and 0.242 for Purchase(100). To precisely separate the
inference scores of M+

ref and M−
ref , we traverse the possible

values of the threshold θthr and choose θthr according to the
corresponding authentication accuracy on the reference mod-
els. From the experiment results shown in Fig. 4 we can see
that, with the threshold increasing from 0, the authentication
accuracy also gradually increases. When the threshold reaches
a certain point, MeFA can achieve the highest authentication

accuracy at this time. Correspondingly, we choose this
threshold as θthr . In this way, we obtain θthr at 0.76 for
Adult, 0.72 for MNIST, 0.75 for Purchase(50), and 0.81 for
Purchase(100) (note that similar θthr can be obtained by
simply setting θthr at the average of A(M+ref (Dfp)) and
A(M−ref (Dfp))).

It can be also observed that as for the authentication accu-
racy, the dataset with more classes will get a more significant
distinction difference between the target data and the external
dataset. This result can explain why MeFA is more precise
and robust in complex classification tasks, as will be shown
in the following results.

C. Performance of MeFA
We next start to evaluate the performance of MeFA.

We compare MeFA with the aforementioned two baselines,
and the authentication precisions and recalls are shown in
Tables I and II, respectively.

Taking MNIST dataset for example, it is observed that
MeFA could achieve a mean precision and recall of 100%
and 94.29%, respectively, which are significantly better than
the baselines. The performance of the first baseline is close to
the random guess which has a mean precision of 50%. This
demonstrates that not all data in Dtgt are suitable to be the
input of the authentication and the membership fingerprints
selected by MeFA is effective. As for the second baseline,
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TABLE II

COMPARISONS OF AUTHENTICATION RECALL

Fig. 5. ROC curves for different datasets.

it can achieve a mean precision and recall of 78.57% and
87.14%, respectively, which stay between the first baseline
and MeFA. Regarding to the performance on different types
of suspect models, we can see that there exists an apparent
gap among them. For the authentication precision and recall
of the first baseline, three types of models including XGB,
LR-L2, and SVM can reach 100%, while DNN and RF models
only get 0. Even for MeFA, the authentication recall of RF
is only 60%, which is 40% lower than other algorithms.
One possible reason is that the prediction distribution of
the fingerprints obtained from RF models is different from
those of other algorithms. This indicates that there exists
an incompatibility among algorithms. For the deficiency of
the second baseline, it can be ascribed to the fact that the
predictions of KL-divergence between suspect models are
more affected by algorithms instead of membership property.

Similar performance can be observed in other three datasets.
In general, the performance of the dataset which has more
features and output dimensions can achieve a higher authen-
tication precision. It can also be observed that MeFA exhibits
steady robustness no matter how the suspect model performs
on its original classification task. Especially for the suspect
model trained on Purchase(100) dataset, even though the
accuracy of the training accuracy varies from 20.86% to
100%, MeFA can always achieve an authentication precision
of 100%.

We further depict the ROC curves of MeFA for the four
datasets, as shown in Fig. 5. From the results, we can see
that these ROC curves of MeFA are close to the coordinate of
(0, 1), indicating MeFA performs much better than the random
guess. With increasing complexity of the dataset, the AUC
score also raises up accordingly. Especially for MNIST and
Purchase, MeFA can achieve an AUC score of 0.97 and 0.99,
respectively.

D. Impact of Different Factors

1) Impact of the Type of Reference Models: In MeFA,
we construct multiple types of reference models for the authen-
tication model. To evaluate the impact of the type of reference
models, we successively remove one type of reference models
and then reconstruct the authentication model.

Fig. 6 depicts the authentication precision of MeFA when
missing one certain type of ML models in reference models.
We can find that in MNIST and Purchase(50), MeFA only
achieves the (lowest) precision 40% or 50% on the missing
model types. As for the rest types, MeFA can achieve an
authentication precision of 100%. Compared with the impact
of other factors, the experiment results reveal that the consid-
ered types of reference models play a more important role in
MeFA. To enhance the robustness of MeFA, we need to add
more model types to train our reference models, in order to
increase the probability that the reference models can cover
the types of suspect models. To achieve this point, we should
consider the domain information hidden behind the target data
during the adding process, and thus limit the chosen range of
added reference model types.

There is also an interesting observation: the inference score
of the target data mainly concentrates around 1, but that
of the external dataset is around 0.45 rather than 0. One
possible reason is that, although we build quantities of suspect
models based on target and external datasets respectively, the
two datasets are sampled from one source dataset and their
distributions are almost the same. If these two datasets differ
more significantly, the inference score of the external dataset
may become much lower than 0.45.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on March 16,2022 at 00:23:56 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: YOUR MODEL TRAINS ON MY DATA? 1033

Fig. 6. The impact of missing an algorithm that the reference models can
take. The horizontal axis represents the algorithm that the suspect model uses,
and the vertical axis represents the missing algorithm in reference models.

Fig. 7. The relationship between the decisive hyper-parameter and the
authenticate accuracy. We control the hyper-parameter within an appropriate
range and measure how it affects MeFA.

2) Impact of the Structure of Suspect Model: From the
perspective of the suspect model, the model structure’s influ-
ence on the prediction becomes an uncertain factor for MeFA.
In this part, we vary DNN and RF suspect models’ hyper-
parameters which control the model structure to evaluate the
impact of the structure of the suspect models. We leave
the training settings of the reference models unchanged, and
then measure the authentication accuracy of MeFA. Fig. 7
shows how decisive hyper-parameter affects MeFA. For DNN
model, when varying the depth of the network, the authenticate
accuracy of Purchase(50) is stubbornly staying at 100%, while
MNIST dataset is perfectly authenticated at the range of 2 to 4
(the depth of DNN model in M+

ref is 3). Meanwhile, when we
set the number of estimators of the RF model in M+

ref at 100,
the accuracy of 100% is also limited to a range around 70 and
100, respectively. These results indicate that as the structure of
the suspect model and that of the same type of reference model
get closer, the authentication performance of MeFA becomes
better.

3) Impact of the Number of Classes: The number of classes
of the protected dataset contributes to how much information
we can use to select the membership fingerprints. In this part,
we measure how MeFA performs when Purchase(100) dataset
is split into 2, 10, 20, 50, 100 classes. The results shown in
Table III illustrate that as the number of classes increases
from 2 to 100, our authentication precision increases from
85.7% to 100%. One reason is that with more numbers of
classes, the reference models can provide more information
that we can utilize to select the membership fingerprints,
and the authentication model can catch more membership
information that the suspect model leaks.

In addition, for each algorithm and dataset with a different
number of classes, we train multiple models with Dtgt , and

TABLE III

PERFORMANCE FOR DIFFERENT NUMBERS OF CLASSES

Fig. 8. Relation between the number of classes and the prediction uncertainty
(information entropy).

derive the mean prediction uncertainty of Dtgt and Dext ,
respectively, as shown in Fig. 8. It can be seen that the
prediction uncertainty difference increases as the number of
classes grows. Consequently, with the increasing number of
classes, the membership attributes of fingerprints become
easier to be distinguished, in which case MeFA could achieve
a higher authentication accuracy.

4) Impact of the Proportion of Dataset Used: In some
cases, the attacker may not utilize the entire but only part of
the target data. In this case, the subsequently trained model
should be also determined as “has stolen the target data”
under the definition of authentication in our setting. In this
experiment, we use different percentage of the target data to
train the suspect models, while leaving the training settings
of the reference models unchanged. Specifically, we vary the
percentage of the data used by the suspect model from 5%
(500 records) to 100% with an inverval of 5%. For different
percentage of data, we train 4 × 7 suspect models (4 for each
algorithm) and evaluate the authentication results.

From the results in Fig. 9, we can see that the curve of
MNIST rises steadily with the increasing percentage, while
the curve of Purchase(50) stays constant in some interval. The
result shows that a percentage above half is needed when
MeFA surpasses the baseline (50%). This is because with
the decreasing percentage, the originally valid fingerprint data
once it becomes out of the selected proportion by the attacker,
would be invalid. As a result, the authentication precision is
positively correlated with the proportion of data used.

5) Impact of Model Type on the Inference Score: More
concretely, the behavioral pattern reflects in the prediction of
the models. Therefore, we check the prediction uncertainty and
inference score of all algorithms, and the results are shown in
Fig. 10. The prediction uncertainty can be regarded as the
cause of the inference score: the former measures the input of
the authentication model and the latter is the output. From the
top row, the difference of M+

ref and M−
ref increases with the
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Fig. 9. The authentication precision as a function of percentage for MNIST
and Purchase(50) datasets. The red line (MNIST) starts (when using only 5%
of the dataset) at 22.44% and the blue line (Purchase(50)) at 14.29%, both of
which are far lower than 100% (when using the whole dataset).

growing complexity of the dataset. Also, the different value
of prediction uncertainty between algorithms explains why
the factor— algorithm is so important in data authentication.
Combined with the bottom row, we find that M+

ref and
M−

ref ’s difference of prediction uncertainty determines that of
inference scores. Comparing the three datasets, we can find
that the large difference of prediction uncertainty causes the
large difference of inference score, resulting in the higher
authentication accuracy. It is therefore important to involve
algorithms that are diverse enough in our framework to make
our MeFA more robust and widely applicable.

E. By-Product: Model IP Protection

Since each ML model has its own uniqueness in the
prediction behavior difference between its training and testing
data, and the membership fingerprints extracted by MeFA for
this model will be significantly different from the fingerprints
of other models. Therefore, our membership fingerprints of
a certain ML model can reflect the model uniqueness and
be intuitively used to authenticate the IP of a black-box ML
model. If most of the fingerprints are determined to belong to
the given model’s training set, then we can verify this model’s
IP to a large extent.

Therefore, we conduct extensive experiments and compare
MeFA with a Blind-Watermark based model IP protection [8].
Table IV shows the comparison results. It can be seen that
MeFA outperforms Blind-Watermark in complicated learning
tasks. For the datasets whose dimension of features and
labels is large, such as Purchase(50) and Purchase(100) with
600 features, the authentication precision of MeFA reaches
100%. Especially for the models trained on Purchase(100), the
performance of MeFA is nearly twice as accurate as that of
Blind-Watermark. In addition, since MeFA is a post-protection
that does not modify the training process of ML models,
it will not affect the performance of the protected model. The
experiment results in Table IV also verify this point of view.

F. Robustness Against MIA Defenses

The authentication process of MeFA essentially is to verify
the membership property of the membership fingerprints with

TABLE IV

COMPARISON OF MeFA AND BLIND-WATERMARK

respect to the suspect model. Therefore, the attack may employ
MIA defenses on the suspect model to escape our authentica-
tion. In order to evaluate the robustness of MeFA against MIA
defenses, we implement the following three MIA defenses on
the suspect model and evaluate the authentication performance
of MeFA.

1) Differential Privacy: Differential privacy (DP) is a solu-
tion for publicly sharing information about a dataset by
describing the patterns of groups within the dataset while
withholding information about individuals in the dataset [44],
[45]. Due to its characteristics, differential privacy has been
widely recognized as an effective defending technique against
MIAs. Typical differential privacy based defenses often add
differential noise to the training data or the prediction outputs
of an ML model to evade the MIAs [46], [47].

2) Restrict Prediction Output: The number of output classes
of an ML model contributes to how much the model leaks.
The more classes, the more information about the internal
state of the model would be available to the attackers and the
higher accuracy of MIAs can achieve. Therefore, restricting
the prediction outputs is supposed to be an effective MIA
defense method. For example, Shokri et al. [12] propose to
add a filter to the model’s output, making it merely outputs
the probabilities of the most likely k classes. The smaller k is,
the less information the model leaks.

3) Reduce Overfitting: Overfittinge is one major reason for
the existence of the risk of MIAs [12], [32], [37]. Therefore,
to defend against MIAs, many researchers have explored to
reduce overfitting using L2-regularization [12], dropout [32],
or model stacking [32] when training an ML model.

a) Robustness against DP: DP guarantees that any single
data record in a dataset has limited impact on the output.
Previous works have shown that DP mechanism can effectively
prevent MIAs [12], [48], [49]. To validate whether DP can
make the suspect models evade our authentication, we evaluate
MeFA’s performance against two different DP mechanisms.

For the first mechanism, we add Laplace noise on every
attribute of the target data, as described in [47], [50], and then
use the noised target data to train a suspect model. Specifically,
we first scale the values in the target data to [−1, 1] and
then add 10 magnitudes of Laplace noise S ∼ La(0, σ ) while
varying σ from 1 × 10−10 to 1.0. For each value of σ , we test
7 × 6 models (6 for each kind of the training algorithm) which
are all trained on target data.
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Fig. 10. The prediction uncertainty (top row) and inference score (bottom row) for suspect models of seven learning algorithms. The prediction uncertainty
is the average information entropy for each data record. In all the three datasets, the prediction uncertainty distribution for each algorithm differs significantly,
which, to some extent, increases the difficulty in our authentication for multiple learning algorithms.

Fig. 11. Authentication accuracy and prediction accuracy for different noise
levels on MNIST and Purchase(50) datasets. The parameter σ in Laplace
noise ranges from 1 × 10−10 to 1.0.

Fig. 11 shows the authentication precision of MeFA and the
prediction accuracy of suspect models concerning to different
DP noise scales. It can be seen that the both authentication
precision and prediction accuracy go down with σ increasing.
Especially when σ grows from 0 to 1.0, there is a sharp dip
to 78.58% (MNIST) and 100% (Purchase(50)) for authenti-
cation precision. As for the performance of suspect models,
the prediction accuracy dramatically decreases by 19.26% in
respect of MNIST and 34.93% in respect of Purchase(50)
respectively.

For the second mechanism, we follow the DP setting in the
recent MIA studies [33], [51] and use DP-SGD [45], the most
representative DP mechanism for training ML models. The
core idea of DP-SGD is to add Gaussian noise to the gradients
of an ML model and then use the noised gradients to update
the model. In this section, we set the privacy budget ε of
DP-SGD varying from 0.2 to 320. In addition, since DP-SGD
can only be applied to the models that encounter gradient

updating in the training process, we only report the results for
the LR and DNN models trained on MNIST and Purchase (50)
datasets. For each value of ε, we test 2 × 6 models as
described above. The experiment results are shown in Fig 12.
The results show that DP-SGD can effectively prevent our
membership inference attack. It worth noting that DP-SGD
can inevitably degrade the target model’s accuracy.

Overall, a large DP noise, no matter it is added to the target
data or to the model gradient, would reduce the utility of
the trained ML models significantly. Therefore, the owner of
the suspect models needs carefully tune the privacy budget
parameters of DP mechanism to achieve a trade-off between
privacy and model utility in practice. In this sense, the
performance of MeFA is satisfactory in terms of the robustness
against differential privacy techniques.

b) Robustness against restriction of prediction to top-
k classes: For a more severe situation, the query access of
the suspect model would not return the whole prediction
vector to the inquirer. Instead, it may only show the top k
classes with their probabilities. To evaluate the impact of the
restriction of prediction to top-k classes on the performance of
MeFA, we perform experiments on MNIST and Purchase (50)
datasets. Specifically, we train 70 suspect models (10 models
for each algorithm) on the target data and external dataset
respectively, while leaving the training settings of reference
models unchanged. Then we restrict the prediction vector of
the suspect models to top k classes to test if this method can
evade the authentication of MeFA. For MNIST (resp. Purchase
(50)) dataset, we set k to {1, 2, . . . , 10} (resp. {1, 2, . . . , 50}).

According to the experiment results, we find that our
authentication precision has an average decline of 1.43% only
when k is set to 1. For the other choices of k, MeFA can
achieve an authentication precision of 100% with more than
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Fig. 12. Authentication accuracy of MeFA and prediction accuracy of suspect
models for different privacy budget of DP-SGD.

top 2 (resp. top 1) prediction for MNIST (resp. Purchase(50))
dataset. It is easy to understand that the number k determines
the input dimension of the authentication model. The larger
the input dimension is, the more information leakage from the
suspect model can be exploited.

c) Robustness against overfitting: In this section,
we adopt the dropout technique to the suspect models and
obtain a series of models with different overfitting levels. More
exactly, we design 160 models, each of which is different
from others in the depth of the network, the rate of dropout
or the number of neurons in a layer. Then we measure the
performance of MeFA with respect to these suspect models.

Fig. 13 presents how overfitting affects our authentication
result. It can be seen that those correctly authenticated models
are restricted to a small scope, while the falsely authenticated
models scatter more separately. On the other hand, the cor-
rectly authenticated models are also far from two groups of
reference models. This may suggest that the authentication
model implements its function with a new pattern rather than
simply grasping the overfitting level of the suspect model.
From the experiment results, we can see that the authentication
performance of MeFA has a high tolerance to the overfitting
level of the suspect model. Even there is a significant differ-
ence between the training and testing accuracy of the suspect
model, MeFA can still verify its training data’s IP precisely.

VI. CONCLUSION

In this paper, we have presented MeFA, a novel framework
for detecting training data IP embezzlement in ML field.
MeFA leverages MIA techniques to extract the membership

Fig. 13. The relationship between the authentication result of MeFA and the
model overfitting level.

fingerprints of the target data, which are then used to verify
the ownership of the data. Extensive experiments on different
datasets show that: 1) the membership fingerprints extracted
by MeFA can be used to effectively measure the similarity of
the prediction behavior for different models; 2) MeFA can be
robust against different types of ML models regardless of the
structure or setting the suspect model takes for training, and
still works even when the training data is partially used or pre-
processed with representative membership inference defenses;
and 3) MeFA can also be used to verify the ownership of
ML models (not limited to DNN models) without modifying
the training process of the model. We believe that MeFA
may deepen the understanding of the connection between the
training data and the ML model, and opens a new pathway on
data IP protection in the booming ML field.

In our future work, we plan to take into consideration ML
models that only output predicted labels [35], [38], which are
widely deployed in practical scenarios, and explore techniques
that can verify the training data IP of such models. Another
potential line of IP protection is to leverage internal charac-
teristics of the target data. According to recent works about
the unfairness of ML applications, the inherent bias existing
in the training data will cause the ML models to output unfair
results with respect to some records [52], [53]. By identifying
the prediction unfairness, we may verify the IP of a suspect
model’s training data with a smaller cost.
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