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Poisoning Attacks in Contrastive Learning

Jian Chen , Member, IEEE, Yuan Gao, Gaoyang Liu , Member, IEEE,
Ahmed M. Abdelmoniem , Member, IEEE, and Chen Wang , Senior Member, IEEE

Abstract— In recent years, contrastive learning has become
very powerful for representation learning using large-scale
unlabeled data, by involving pre-trained encoders to fine-tune
downstream classifiers. However, the latest research indicates that
contrastive learning can potentially suffer from the risks of data
poisoning attacks, where the attacker injects maliciously crafted
poisoned samples into the unlabeled pre-training data. To step
forward, in this paper, we present a more stealthy poisoning
attack dubbed PA-CL to directly poison the pre-trained encoder,
such that the downstream classifier’s behavior on a single target
instance to the attacker-desired class can be manipulated without
affecting the overall downstream classification performance. We
observe that a high similarity exists between the feature rep-
resentation generated by the poisoned pre-trained encoder for
the target sample and samples from the attacker-desired class.
This leads to the downstream classifier misclassifying the target
sample with the attacker-desired class. Therefore, we formulate
our attack as an optimization problem, and design two novel loss
functions, namely, the target effectiveness loss to effectively poi-
son the pre-trained encoder, and the model utility loss to maintain
the downstream classification performance. Experimental results
on four real-world datasets demonstrate that the attack success
rate of the proposed attack is 40% higher on average than that of
the three baseline attacks, and the fluctuation of the downstream
classifier’s prediction accuracy is within 5%.

Index Terms— Targeted poisoning attack, contrastive learning,
poisoned pre-trained encoder.
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I. INTRODUCTION

THE widespread adoption of supervised learning has led to
tremendous success in various domains. However, these

methods often require collecting and annotating a massive
amount of labeled data to train a supervised model, leading
to extensive human resources efforts. Recently, contrastive
learning in self-supervised learning [1], [2], [3] is gradually
becoming a prominent paradigm, which aims to push the
limitation and achieves remarkable performance in diverse
downstream tasks such as image classification [4], object
detection [5], language modeling [6] and machine transla-
tion [7].

Generally, the contrastive learning pipeline mainly consists
of two fundamental parts: the first part intends to pretrain an
encoder learned from a large amount of unlabeled data, while
in the second part, the obtained pre-trained encoder is used to
fine-tune downstream classifiers through transfer learning for
many downstream tasks. Prior works on contrastive learning
mainly aim to design advanced algorithms to achieve better
prediction performance for diverse downstream tasks, while
leaving the potential security vulnerabilities in contrastive
learning largely unexplored [8], [9], [10].

A few recent studies focus on the so called targeted poi-
soning attacks in contrastive learning [11], [12], where the
attacker aims to make downstream classifiers misclassify a
particular target testing sample to the attacker-desired class1

without inference-time modification, by poisoning the pre-
training data. For instance, Carlini and Terzis [11] develop
techniques to generate poisoned image-text pairs and inject
them into the pre-training data to obtain a poisoned encoder.
Liu et al. [12] propose to fabricate poisoned samples in the
pixel space, which are snuck into the unlabeled pre-training
data to manipulate the encoder. It is crucial to highlight that
their work primarily focuses on backdoor attacks, requiring
modifications to the testing sample, and differs from the focus
of our work. Both works illustrate the possibility of poisoning
the pre-training data by compromising the pre-training data
collection process to launch targeted poisoning attacks in
contrastive learning. However, affecting the integrity of such a
large amount of unlabeled pre-training data may be impractical
in real-world scenarios.

1In what follows, we replace “attacker-desired” with “desired”, and “pre-
trained encoder” with “encoder” for short without causing confusion.
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In this paper, we make a step forward and propose a novel
and more stealthy targeted poisoning attack in contrastive
learning, dubbed PA-CL, by poisoning the encoder directly
without breaching the integrity of the pre-training data. Our
design is motivated by the insight that the downstream clas-
sifier prediction for the target sample would be classified as
the desired class if the obtained feature through the encoder
for the target sample is similar to the feature of samples
belonging to the desired class. Thus, the key idea of PA-CL
is to maximize the similarity of the features between the
target sample and the samples drawn from the desired class.
In this way, the downstream classifiers would then inherit the
poisoning behavior from the poisoned encoder, yielding its
intended misprediction for the target sample.

Though the basic idea is simple, PA-CL faces two major
challenges. First, how to guarantee that the target sample
is successfully misclassified as the attacker’s desired class.
Achieving this alone is not enough if we only enforce the
poisoned encoder to produce similar feature representation
between the target sample and samples of the desired class.
More importantly, the poisoned encoder may potentially have
a negative impact on the feature representations of the samples
in the desired class. Second, maintaining the overall prediction
performance of the downstream classifier is also challenging.
Since the attacker intentionally modifies the encoder, it is
almost inevitable to distort the association between the cor-
responding features of samples with different labels, which
can result in the degradation of the downstream classifier
predictions.

To tackle the above challenges, we formulate our PA-CL
as an optimization problem and devise two well-focused
loss functions. In particular, we design a target effectiveness
loss which can enforce the poisoned encoder to produce
similar feature vectors for the target sample and the sample
in the desired class; simultaneously, the feature vectors for
the sample in the desired class generated separately by the
poisoned encoder and benign encoder are required to be
similar. In addition, we design a model utility loss which
can impose the poisoned encoder to generate similar feature
vectors for the clean samples as the benign encoder does.
Subsequently, the weighted sum of the two loss terms is
minimized to optimize the poisoned encoder, and a gradient-
descent-based method is adopted to solve this optimization
problem.

We summarize our major contributions as follows:
• We propose PA-CL, a more stealthy targeted poisoning

attack methodology in contrastive learning, which directly
poisons the encoder instead of injecting poisons into the
training set.

• We formulate PA-CL as an optimization problem, and
design new target effectiveness loss and model utility loss
to effectively poison the encoder while maintaining the
downstream classification performance.

• We conduct extensive experiments to evaluate the effec-
tiveness of PA-CL on four real-world datasets. The
experimental results demonstrate that the attack success
rate of PA-CL is 40% higher on average than that of
the three baseline attacks, and the fluctuation of the

downstream classifier’s prediction accuracy is within 5%.
The results also show that PA-CL is resilient to three
typical defense methods.

The remainder of this paper is organized as follows.
Section II describes the contrastive learning pipeline and the
threat model, followed by the design details of PA-CL in
Section III. Section IV presents the experimental results, and
Section V shows the performance of PA-CL and baseline
attacks against existing defenses. Section VI introduces some
related works. Finally, Section VII concludes the paper. The
code of PA-CL has been released for reproducibility purposes.2

II. PRELIMINARIES AND THREAT MODEL

In this section, we initially present the contrastive learning
pipeline, followed by the threat model that encompasses the
attacker’s goal, knowledge, and capability.

A. Preliminaries on Contrastive Learning

Contrastive learning is regarded as a paradigm of unsuper-
vised learning and usually contains two main components: a
pre-training encoder and a downstream classifier. Contrastive
learning first pre-trains an encoder based on a large amount
of unlabeled data. Subsequently, many downstream classifiers
can be built by the pre-trained encoder using only a small set
of labeled data.

1) Pre-Training an Encoder: There are many representative
contrastive learning algorithms, e.g., SimCLR [13], MoCo
v2 [14], BYOL [1], Unicoder-vl [15] and SimSiam [16].
Generally, the fundamental concept behind contrastive learning
involves the pre-training of an encoder, aiming to generate
similar feature vectors for positive pairs or dissimilar feature
vectors for negative pairs. For example, SimCLR [13] gen-
erates two augmented samples for each data in a randomly
N mini-batch, resulting in totally 2N augmented data. It con-
siders two augmented samples as a positive pair if they are
created from the same data; otherwise, these two augmented
samples are regarded as a negative pair. SimCLR then learns
the encoder so that the cosine similarity between the latent
representations of the positive pairs is maximized and the
negative pairs are minimized.

2) Training Downstream Classifiers: Given the pre-trained
encoder, it can be used to extract features for a variety of
downstream tasks. In this work, we assume that we can obtain
a labeled training dataset for specific downstream tasks. Thus,
we can first extract feature representations using the pre-
trained encoder for labeled samples in the downstream dataset.
Then we utilize the extracted feature representations and the
corresponding labels to jointly train the downstream classifier
by the standard supervised learning algorithms during the
training process. In the testing phase, we can then use the
trained downstream classifier to predict the label for a given
testing sample.

2https://www.dropbox.com/s/4xd4kiabevpw0ua/PA-CL-Code.zip?dl=0
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Fig. 1. Overview of PA-CL, which contains three steps: poisoning the encoder, building the downstream classifiers, and testing the downstream classifiers.
In the training phase, the attacker poisons the pre-trained encoder and then teaches the target downstream classifier to learn the poison behavior through transfer
learning. In the testing phase, the target poisoned downstream classifier will misclassify the target inputs as desired labels without infecting the performance
of other downstream classifiers.

B. Threat Model

We consider a malicious third-party as the attacker who
first poisons the pre-trained image encoder obtained from the
service provider, and then distributes the poisoned encoder
to different downstream customers. In this case, the attacker
first identifies the target downstream task (e.g., the road sign
recognition task in Fig. 1) he/she aims to manipulate, and then
selects a specific target sample from the “speed limit 120”
class (referred to as the target class), which is desired to be
misclassified to the “stop” class (referred to as the attacker-
desired class). Additionally, the attacker has the capability to
gather a set of surrogate samples, including clean samples
associated with the road sign recognition task, as well as
samples belonging to the attacker-desired class. Leveraging
their knowledge, the attacker poisons the pre-trained encoder,
inheriting the poisoning behavior from the poisoned encoder.
This leads to the desired misclassification of the target sample.

1) Attacker’s Goal: Generally, the attacker aims to craft the
poisoned encoder based on the encoder and manipulate the
parameters corresponding to the target class and the desired
class in the encoder so that the downstream classifier trained
on this manipulated encoder will misclassify the target sample
as the desired label without adversely impacting the prediction
accuracy on non-target samples.

More specifically, the attacker’s goal can be defined as the
target effectiveness goal and the model utility goal as follows:
• Goal I: target effectiveness goal. This goal refers to the

targeted misclassification behavior on the particular target
sample by the poisoned downstream classifier during the
test-time phase. It attempts to ensure that the downstream
classifier learned from the poisoned encoder can predict
the desired label for the target samples.

• Goal II: model utility goal. This goal implies the unin-
fluenced prediction performance of the poisoned down-
stream classifier on non-target samples. It is intended
that the downstream classifier learned from the poisoned
encoder can make same predictions as the downstream
classifier trained by the benign encoder for non-target
samples.

2) Attacker’s Knowledge: In the aforementioned scenario,
the attacker is assumed to obtain the following knowledge.

First, the attacker knows which sample he desires to attack
(e.g., a particular sample from “speed limit 120” class con-
sidering the road sign recognition task). Second, the attacker
has the capability to obtain the samples from the desired class
(e.g., the “stop” class) which the attacker wishes the target
sample to be misclassified for in the target downstream task.
Moreover, the attacker is assumed to obtain a set of surrogate
dataset and they are not drawn from the downstream dataset
directly. Note that this is reasonable as in practice the attacker
can easily collect these surrogate data from the Internet given
the knowledge of the downstream task. By optimizing the poi-
soned encoder to produce more similar feature representations
for samples in the surrogate dataset as the benign encoder
does, our model utility goal can thus be achieved.

It should be noted that since the attacker does not disrupt the
training procedure of the downstream classifier, no knowledge
about the downstream dataset used to train the downstream
classifier is required.

3) Attacker’s Capability: To launch PA-CL, the attacker
directly manipulates the parameters of the encoder obtained
from the service provider by fine-tuning it with samples from
the desired class drawn from the downstream task and samples
in the surrogate dataset. Generally, the attacker’s capability
is limited by the number of these samples. With limited
samples from the desired class, it can easily achieve the target
effectiveness goal. However, the model utility goal is more
relevant to the number of samples in the surrogate dataset.
The attacker may require a higher cost for obtaining additional
surrogate samples to improve the model utility.

III. PA-CL DESIGN

A. Overview

In this section, we describe how to manipulate the encoder
in a standard contrastive learning pipeline. Recall that our
objectives include optimizing both the target effectiveness goal
and the model utility goal. To achieve the first goal, we focus
on modifying the encoder so that it can generate similar feature
representations for the target sample and samples in the desired
class. By doing so, the downstream classifiers built on the
poisoned encoder will have a larger probability to classify the
target sample as the desired class. Meanwhile, it is crucial to
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Fig. 2. The optimization procedure of PA-CL. Assuming that the downstream
task is traffic signs recognition and we try to misclassify a target sample from
“speed limit 120” class to “stop” class. To achieve Goal I, we maximize
the similarity of “speed limit 120” class to “stop” class in the feature repre-
sentations produced by the poisoned encoder for both the target sample and
the attacker-chosen sample. To achieve Goal II, we maximize the similarity
between the feature representations of the target sample (generated by the
poisoned encoder) and the sample from “stop” class (generated by the benign
encoder).

ensure that the poisoned encoder can generate similar feature
representations for samples from the desired class as those
produced by the encoder, thereby minimizing the risk of
misclassification. To achieve the second goal, we aim to ensure
to maximize the similarity of feature representations generated
by the poisoned encoder and the encoder on the surrogate
dataset. Therefore, our main idea is to formulate our attack as
an optimization problem and use loss terms to quantify our
two goals. Then we can utilize the stochastic gradient descent
(SGD) method to solve this optimization problem, resulting
in the poisoned encoder. Fig. 1 illustrates an overview of our
PA-CL.

Here, we denote a clean pre-trained image encoder and
our poisoned one as fb and f p, respectively. For each target
downstream task, the attacker selects a target sample xt and
then collects a set of surrogate samples denoted as Ds =

{xs1, xs2, . . . , xs M }, where M is the total number of samples
in the surrogate dataset, and samples in the attacker-desired
class are denoted as Dd = {xd1, xd2, . . . , xd N }, where N is
the total number of samples selected in the desired class.

B. Formulating PA-CL as an Optimization Problem

We formulate the attack methodology PA-CL as an opti-
mization problem, and devise the target effectiveness loss
and the model utility loss to quantify Goal I and Goal II,
respectively (c.f. Fig. 2). In the following, we will discuss
how to achieve both goals in details.

1) Achieving Goal I: To achieve the Goal I, a straightfor-
ward way is to generate similar feature representation between
the target samples and randomly selected samples that belong
to the desired class for the poisoned encoder. Thus, the target
downstream classifier trained on the poisoned encoder would
have a higher chance of predicting the same label for the
target sample and the samples in the desired class. However,
the feature representations produced by the poisoned encoder
would vary greatly if we randomly select the single sample
from the desired class. Therefore, it is nontrivial to directly
satisfy Goal I.

Motivated by [17] and [18] that the averaged feature
representations from multiple samples produce more stable
classification results than from a single sample, we thus

explore the potential benefits of utilizing averaged features,
and enhance the effectiveness of our attack by selecting
additional samples from the desired class and averaging their
feature representations by the poisoned encoder, so that the
averaged feature representations belong to the desired class.
Formally, we define the averaged feature representation gen-
erated by the poisoned encoder as:

fa(Dd) =
1
N

∑
xd∈Dd

f p(xd), (1)

where Dd represents the samples from the desired class for
each downstream task. f p denotes the mapping relationship
of the poisoned encoder in extracting feature representations
from samples. Then, the poisoned encoder generates feature
representations for the target sample that should be close
to the averaged feature representation for the samples from
the desired class. Thus, our target effectiveness loss can be
quantified as:

L1 = d( f p(xt ), fa(Dd))), (2)

where d(., .) is a metric that can measure the distance between
two feature representations (e.g., cosine similarity, a most
commonly used similarity metric in high dimensional spaces),
and xt is the target sample.

On the other side, we also require the poisoned encoder
produces feature representations for the samples from the
desired class that are similar to those generated by the benign
encoder in order to guarantee that the poisoned downstream
classifier predictions of the target sample result in the desired
class. This is largely because the downstream classifier trained
on poisoned encoder may not correctly predict the label of
each sample from the desired class due to its altered predic-
tion capabilities by the fine-tuning process of the poisoned
encoder. Generally, the target effectiveness loss is smaller if
the poisoned encoder and the benign encoder generate more
similar feature representations for each clean sample from the
desired class in Dd . Therefore, our target effectiveness loss
also includes the following term:

L2 =
1
N
·

∑
xd∈Dd

d( f p(xd), fb(xd)), (3)

where fb represents the mapping relationship of the encoder
in obtaining feature representations from samples.

To this end, our target effectiveness loss can be described
as a weighted sum of the aforementioned two terms as:

Lt = L1 + λ1 · L2, (4)

where λ1 is a hyperparameter to balance the two terms. It is
noted that a smaller value of L1 implies that the feature
representations for the target sample obtained by the poisoned
encoder are similar to those for the samples in the desired
class, while a smaller value of L2 implies that the poisoned
encoder and the encoder can produce more similar feature
vectors for samples in the desired class.

2) Achieving Goal II: To achieve this, we only distort the
association between the target class yt and the desired class
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Algorithm 1 PA-CL Algorithm
Input: The encoder fb, the target sample xt , total number of
training epochs n, hyperparameters λ1, λ2, the surrogate
dataset Ds , samples from the desired class Dd

Output: Poisoned encoder f p

1: Initialize f p ← fb, epoch ← 1
2: While epoch ≤ n do
3: fa(Dd)← 1

N
∑

xd∈Dd
f p(xd);

4: fayt
←

1
N

∑
xd∈Dd

f pyt
(xd);

5: fayd
←

1
N

∑
xd∈Dd

f pyd
(xd);

6: L′1 ← d( f pyt
(xt ), fayt

(Dd))

7: +d( f pyd
(xt ), fayd

(Dd));
8: L2 ←

1
N ·

∑
xd∈Dd

d( f p(xd), fb(xd));

9: L3 ←
1
M ·

∑
xs∈Ds

d( f p(xs), fb(xs));
10: L f inal ←L′1 + λ1 · L2 + λ2 · L3;
11: epoch ← epoch + 1;
12: Return f p

yd and preserve the association for other classes. Luckily,
Grad-CAM [19] is a technology to extract feature repre-
sentations for each class that can be utilized to obtain the
feature representations corresponding to yt and yd . Therefore,
the averaged feature vectors fayt

(Dd) (resp. fayd
(Dd)) corre-

sponding to yt (resp. yd ) can be described as:

fayt
(Dd) =

1
N

∑
xd∈Dd

f pyt
(xd), (5)

fayd
(Dd) =

1
N

∑
xd∈Dd

f pyd
(xd), (6)

where f pyt
(xd) (resp. f pyd

(xd)) is the feature vectors corre-
sponding to yt (resp. yd ) for the samples from the desired
class.

Therefore, L1 in Eq. (2) can be described as:

L′1 = d( f pyt
(xt ), fayt

(Dd))+ d( f pyd
(xt ), fayd

(Dd)), (7)

where f pyt
(xt ) is feature vectors corresponding to yt and

f pyd
(xt ) is feature vectors corresponding to yd for the tar-

get sample. It is worth noting that the optimization with
L′1 incorporates the optimizations for both Goals I and II, and
when PA-CL attacks multi samples simultaneously, L′1 can be
rewritten as:

L′1 =
∑

xt∈Dt

d( f pyt
(xt ), fayt

(Dd))+ d( f pyd
(xt ), fayd

(Dd)),

(8)

where Dt = {(x j , y j )}
m
j=1 represents the set of selected target

samples from the testing dataset for the downstream task.
Furthermore, it is known that the encoder captures meaning-

ful and discriminative features that contribute to the accurate
classification. By maintaining similarity between the feature
representations for each sample in the surrogate dataset from
the poisoned encoder and the benign encoder, we can preserve
the extraction capability of the poisoned encoder for the clean
samples. Consequently, the downstream classifier trained on

the poisoned encoder can leverage these preserved feature rep-
resentations to make accurate predictions for testing samples.
Thus, our model utility loss also needs to incorporate:

L3 =
1
M
·

∑
xs∈Ds

d( f p(xs), fb(xs)), (9)

Finally, given the three loss terms L′1, L2 and L3, we can
obtain a weighted sum of the three terms and achieve the two
goals simultaneously by solving the following optimization
problem:

min
f p
L f inal = L′1 + λ1 · L2 + λ2 · L3, (10)

where λ1 and λ2 are hyperparameters balancing these terms.

C. Solving the Optimization Problem

To solve the optimization problem in Eq. (10), we can
utilize the standard SGD method. We use a benign encoder
as the initialized poisoned encoder, and calculate the gradient
of the loss L f inal using a mini-batch of samples in the
surrogate dataset during the training process. After an adequate
number of training epochs the poisoned encoder can be finally
obtained. The entire process can be found in Algorithm 1.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

1) Datasets: Following the prior work [9], we perform
experiments using four benchmark datasets as follows:

CIFAR-10 [20]. This dataset contains 60, 000 32 × 32 ×
3 color images in 10 different classes, with 50, 000 train-
ing samples and 10, 000 testing samples. These 10 different
classes include cats, deer, dogs, frogs, airplanes, cars, horses,
ships, birds, and trucks.

STL-10 [21]. This dataset includes 13, 000 96 × 96 ×
3 color images in 10 different categories, with 5, 000 training
samples and 8, 000 testing samples. Moreover, this dataset
also includes 100, 000 unlabeled samples for unsupervised
learning.

GTSRB [22]. This dataset consists of 51, 800 32 × 32 ×
3 traffic sign images in 43 different classes, with 39, 200 train-
ing samples and 12, 600 testing samples.

SVHN [23]. This dataset contains 99, 289 32×32×3 house
numbers in Google Street View in 10 different classes, with
73, 257 training samples and 26, 032 testing samples.

2) Baselines: We compare PA-CL with the following three
baseline attacks:

PoisonedEncoder (PE) [12]: PE is a state-of-the-art targeted
data poisoning attack to contrastive learning. This attack is
formulated as a bilevel optimization problem and a set of poi-
soned data is generated via combining a target data and a data
from desired class to solve the problem. Generally, we adopt
the default parameters from PE, and use the four proposed
combination method together to generate 1% poisoned data
into the pre-training dataset.

Witches’ Brew (WB) [24]: WB is a typical targeted poison-
ing attack to deep neural network (DNNs). Specifically, this
attack is formulated as a bilevel optimization problem which
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is then solved with a heuristic method based on aligning the
gradients of the inner and outer objective functions.

In our experiments, we extend their method to con-
trastive learning and craft poisoned data by solving the
formulated bilevel optimization problem in PE [12]. More
concretely, let xt denote the target sample with a target
class yt for target downstream task, X yt represent a set
of reference samples from the target class, Xc refer to
the clean pre-training dataset, X p correspond the poisoned
dataset, and θ denote the functionality of the benign encoder.
We then generate poisoned data by maximizing the align-
ment between

∑
xr∈X yt

−∇θLCL
(
xt , xr ; θ

(
Xc ∪ X p

))
and

∇θLCL
(
Xc ∪ X p; θ

)
.

Interpolation Consistency Poisoning (ICP) [25]: ICP is a
state-of-the-art targeted poisoning attack to semi-supervised
learning. Specifically, ICP generates poisoned data as interpo-
lations between a target sample and the sample with desired
class. In our evaluation, we extend ICP to contrastive learning,
where the selected target sample and the desired sample are
the same with PE [12].

Note that PE is designed for targeted poisoning attacks
in contrastive learning by adding poisons to the pre-training
dataset. In contrast, PA-CL directly poisons the encoder.
In addition, WB and ICP are originally designed for supervised
learning and semi-supervised learning, respectively. We thus
extend WB and ICP to the contrastive learning setting for
fair comparisons. It is also crucial to highlight that the attack
method introduced by Carlini and Terzis [11] is unsuitable
for comparison due to its characteristics involving multimodal
contrastive models.

3) Evaluation Metrics: Let C p denote the poisoned down-
stream classifier and Cc represent the clean downstream
classifier, and I refers to an indicator function. We adopt the
following three metrics to evaluate the performance of PA-CL:

Attack Success Rate (ASR): Given the target testing samples,
ASR is the proportion of these samples that are correctly
predicted as the desired class for C p. It can be formulated
as:

AS R =

∑
(x j ,y j )∈Dt

I(C p( f p(x j )) = yd)

m
, (11)

Poisoned Test Accuracy (PTA): PTA is the fraction of testing
examples (excluding the target samples) that are correctly
predicted by the poisoned downstream classifier trained on
the poisoned encoder, and can be expressed as:

PT A =

∑
(xi ,yi )∈Dd\Dt

I(C p( f p(xi )) = yi )

n − m
. (12)

Clean Test Accuracy (CTA): CTA is the fraction of testing
examples (excluding the target samples) that are correctly
predicted by Cc trained on the benign encoder, which is given
by:

CT A =

∑
(xi ,yi )∈Dd\Dt

I(Cc( fb(xi )) = yi )

n − m
. (13)

4) Model Setting: Next we describe the settings of the
model training.

a) Pre-training encoder: In our experiments, we pretrain
the encoder on CIFAR-10, STL-10 and GTSRB as the pre-
training dataset, separately. Specifically, we use the training
samples without the labels to pretrain the image encoder
for CIFAR-10 and GTSRB dataset. Similarly, we utilize the
unlabeled samples from the STL-10 dataset to pretrain an
encoder. Furthermore, we consider the testing samples from
the corresponding pre-training dataset as our surrogate dataset.
This is because the surrogate dataset should be different from
the pre-training dataset, however, they need to have the same
distribution.

We adopt a popular representative contrastive learning
algorithm SimCLR to train a ResNet18 model [26] as our
benign encoder. SimCLR mainly consists of four major
components, including the encoder, projection head, data
augmentation, and contrastive loss function. During the train-
ing process, SimCLR generates two augmented samples
for each data randomly in N mini-batches (denoted as
{x1, x2, . . . , xN }), resulting in totally 2N augmented data
samples {̃x1, x̃2, . . . , x̃2N }. SimCLR considers two augmented
samples (̃xi , x̃ j ) as a positive pair if they are created from
the same data; otherwise, these two augmented samples are
regarded as a negative pair. Then it trains the encoder so that
the cosine similarity between the latent representations of the
positive pairs is maximized and that of the negative pairs is
minimized. We pretrain the encoder for 500 training epochs,
with a batch size of 256, and an initial learning rate of 0.001,
using the Adam optimizer. The metric d utilized in the loss
function corresponds to cosine similarity.

b) Training downstream classifiers: To train the down-
stream classifier, we use the training dataset of the downstream
dataset via a clean or poisoned encoder as a feature extrac-
tor. For instance, if we pretrain an encoder on CIFAR-10,
we will use this encoder to train each downstream classifier
for each downstream dataset (e.g., STL-10, GTSRB, and
SVHN). Moreover, for the downstream classifier, we choose
a fully connected neural network with two hidden layers
as its architecture. We train the downstream classifier for
300 training epochs, with a batch size of 256, and an initial
learning rate of 0.01, also using the Adam optimizer.

5) Experimental Settings: Here, we consider the following
parameter settings for PA-CL: the attacker randomly selects
a particular testing sample from different classes in the target
downstream dataset, and randomly chooses a class that does
not belong to the true class of the target sample as the desired
class. For each experiment, we randomly select 50 target
samples and conduct PA-CL separately. Then we report exper-
imental results as average. To strike a balance between the
target effectiveness and model utility goal, we set λ1 = 1 and
λ2 = 1 in our experiments. We perform the experiments on
NVIDIA-RTX-3090 GPU with 24 GB memory.

B. Effectiveness of PA-CL

We first conduct a comparative study to assess the attack
effectiveness of PA-CL in comparison to baseline attacks. The
performance comparison of PA-CL with WB, ICP, and PE
on different pre-training datasets and downstream datasets is
summarized in Table I and we evaluate ASR and PTA on
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TABLE I
COMPARISON ANALYSIS WITH DIFFERENT PRE-TRAINING DATASETS AND DOWNSTREAM DATASETS

all the three downstream datasets for a given pre-training
dataset. The results indicate that the poisoned encoders can
successfully predict target samples as the desired class for
most cases and PA-CL can obtain high attack success rates
for different targets. Generally, PA-CL can reach 68% ASR
on average and it has 56%, 19%, and 10% ASR higher than
WB, ICP, and PE, respectively. We can notice that WB is
almost ineffective and ICP is also invalid for most cases.
This is largely because WB and ICP are initially designed
for supervised learning and semi-supervised learning, and they
do not perform well when extended to contrastive learning.
We also notice that ICP achieves moderate ASRs but performs
better than WB, possibly due to the data augmentations
during the pre-training phase. PE is relatively effective when
the downstream dataset is GTSRB, CIFAR-10, and STL-10.
However, ASR is relatively lower than other cases when
the downstream dataset is SVHN. The reason is that the
large gap between STL-10 (or CIFAR-10) and the unbalanced
SVHN dataset could lead to a lower ASR. Additionally, it is
noticeable that conducting attacks becomes easier when the
pre-training dataset is GTSRB. This may be attributed to
GTSRB having a larger number of classes in the dataset,
leading to a decrease in model accuracy. Overall, PA-CL
outperforms WB, ICP and PE in most cases.

Table I also illustrates the PTA of PA-CL, WB, ICP, and PE
on different pre-training datasets and downstream datasets. For
better comparison, the column of “No Attack” shows the CTA
before conducting attacks. The experimental results show that
CTA and PTA are relatively closer to each other for different
downstream testing datasets. Generally, the gap between the
CTA and PTA for a given downstream dataset is within 5%
on average for PA-CL. This confirms that PA-CL can also
preserve the utility of the encoder. We can observe that PA-CL
not only learns stronger feature representations for non-target
samples but also learns the poisoned behavior just as expected.

In addition, we can find that PTA is always slightly
higher than CTA. This is mainly because some downstream
task information from the downstream training dataset has
fed into the poisoned encoder during training the poisoned

TABLE II
ASR OF PA-CL WITH BASELINE ATTACKS FOR DIFFERENT CONTRASTIVE

LEARNING ALGORITHMS

encoder, making it easier for representation learning of the
corresponding downstream tasks. Specially, PTA is relatively
higher than CTA when the downstream dataset is SVHN.
A key reason behind this is that the SVHN dataset is noisy
and the representation capability of the poisoned encoder
becomes stronger when fine-tuning the benign encoder with
the clean dataset. Our results show that our poisoned encoder
can generate much more similar feature vectors for the target
input and the desired inputs than that of PE because PA-CL
does not distort the association for other classes.

C. Impact of Learning Algorithm and Encoder Architecture

Next, we evaluate the impact of different contrastive learn-
ing algorithms and encoder architectures on the ASR of the
attacks. Table II illustrates the ASR of PA-CL, WB, ICP, and
PE when the contrastive learning algorithms SimCLR [13],
MoCo [14] and SupCon [27] are used to pre-train encoders.
Compared to SimCLR, MoCo adopts an additional momentum
encoder that can achieve high performance without large mini-
batches and SupCon trains encoder via supervised learning
method. Here, we use GTSRB as our downstream train-
ing dataset. Our experimental results show that the ASR is
relatively high when MoCo is used to pre-train encoders,
which indicates that MoCo is more vulnerable to poisoning
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TABLE III
ASR OF PA-CL WITH BASELINE ATTACKS FOR

DIFFERENT ENCODER ARCHITECTURES

attacks. Additionally, SupCon exhibits a stronger resistance
to our attack. PA-CL is effective for both contrastive learning
algorithms when the pre-trained dataset is CIFAR-10. Besides,
PA-CL outperforms other baseline attacks on all the attack
settings, indicating its strong attacking capability.

Table III demonstrates the ASR of PA-CL, WB, ICP
and PE when different encoder architectures (ResNet18 [26],
VGG11 [28], DenseNet121 [29] and MobileNet-v2 [30]) are
used to pre-train encoders. The experimental results show that
the ASR of PA-CL is relatively high under different encoder
architectures compared to other baselines. What is more, PA-
CL is agnostic to encoder architecture, because it does not
rely on the encoder architecture to generate poisoned data.
Generally, the results show that VGG11 is more vulnerable to
different poisoning attacks and MobileNet-v2 is more robust.
It also can be observed that PA-CL can reach higher ASR
compared to PE. This again confirms that PA-CL is a strong
and robust attack method.

D. Impact of the Parameters on the Loss Terms

Next, we evaluate the impact of parameters λ1 and λ2 in
Eq. (10) to illustrate how the parameters balance the per-
formance. Here, we select CIFAR-10 as the pre-training
dataset, with GTSRB and STL-10 as the downstream dataset.
We average the results on different cases. Fig. 3 shows CTA,
PTA and ASR when different λ1 and λ2 are selected. Our
experimental results indicate that λ1 and λ2 are necessary for
PA-CL to achieve a high ASR, while maintaining the utility
of the downstream classifiers. It can be observed that the
ASR remains high when λ1 is fixed, while the ASR fluctuates
when λ1 changes. This is largely because λ1 is designed to
achieve the target effectiveness goal. Similar for λ2, its role
is to preserve the utility of the downstream classifiers and the
PTA fluctuates when λ2 changes. Besides, the gap between the
CTA and PTA for all cases is within 5%, indicating PA-CL
can preserve the utility of the encoder.

In summary, both λ1 and λ2 are essential parameters in
PA-CL, and their careful selection and fine-tuning process are
necessary to achieve a high ASR while maintaining stable PTA
for the downstream classifiers. Generally, a higher value of
λ1 would make more emphasis on optimizing the poisoned
encoder to achieve the desired misprediction during the testing

Fig. 3. Impact of λ1 and λ2 on CTA, PTA and ASR.

Fig. 4. Impact of attacking multiple target downstream tasks.

phase, but could compromise the original functionality of the
pre-trained encoder. Meanwhile, a higher value of λ2 would
ensure the encoder to retain its original classification capability
for non-poisoned samples, and allow the encoder to adapt more
flexibly to the poisoning attack. Therefore, it is crucial to find
the right balance between these parameters for the success of
the attack methodology.

E. Impact of Attacking Multiple Target Downstream Tasks

We next evaluate the performance of PA-CL on attacking
multiple target downstream tasks. We use either CIFAR10
or STL-10 as the pre-training dataset and attack three target
downstream tasks simultaneously. For each target down-
stream task, we randomly select one target sample and a
corresponding desired class. The results depicted in Fig. 4
demonstrate the effectiveness of PA-CL in attacking multi-
ple target downstream tasks simultaneously. Notably, PA-CL
achieves comparable ASR when compared to attacking each
target downstream task separately, achieving 80% ASR on
average. Importantly, PA-CL also maintains the prediction
accuracy of the downstream classifiers and the PTA of PA-
CL is generally equal to the CTA in most cases. This implies
that the poisoned encoder generated by PA-CL does not signif-
icantly compromise the overall classification performance of
the downstream classifiers on non-target samples. It is also
interesting to note that in the case when the downstream
dataset is SVHN, the PTA of PA-CL is higher than the
CT. This can be attributed to the noisy characteristic of
SVHN and the fact that the poisoned data may resemble data
augmentation techniques, which can have a positive effect on
the classification performance of the downstream classifier.

F. Impact of Attacking Multiple Target Inputs

We also evaluate the performance of PA-CL on attacking
multiple target classes in a single target downstream task.
Specifically, the attacker randomly selects multiple target
samples from different target classes in the same target down-
stream task. The experiment is performed using GTSRB as
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Fig. 5. Impact of attacking multiple target inputs.

the downstream dataset, and either CIFAR-10 or STL-10 as
the pre-training dataset.

From the results in Fig. 5, we can observe that PA-CL
can effectively attack multiple target inputs simultaneously.
As the number of target samples increases, PA-CL consistently
maintains a high ASR. For instance, the ASR of PA-CL
can reach an impressive ASR of 95% when attacking three
target inputs simultaneously. However, it is observed that
the ASR begins to decrease as the number of target inputs
continues to increase, and obtains an ASR of 75% when
attacking ten target inputs. The reason is that manipulat-
ing a small number of target samples to a certain extent
is relatively easier for the attacker; however, as the num-
ber of target samples continues to increase, the attacker
faces greater challenges in controlling the similarity between
the feature representations of different target samples. The
increased complexity makes it more difficult to maintain the
desired associations for all target samples simultaneously,
resulting in a decrease in the overall effectiveness of the
attack.

G. Impacts of Learning Rate and Batch Size

Table IV demonstrates the ASR of PA-CL when pre-training
the encoder and training the downstream classifier built based
on the poisoned encoder using different learning rates or
batch sizes. We use CIFAR-10 as the pre-training dataset and
GTSRB as the downstream dataset. We can observe that PA-
CL achieves consistently high ASRs under different parameter
settings. In particular, PA-CL achieves a slightly lower ASR
when pre-training the encoder with the learning rate 5×10−3.
This is because the encoder learns less feature representations
under this learning rate. We can notice that the ASR may
remain the same in most cases. The reasons are twofold.
On the one hand, the success of PA-CL primarily relies on the
ability to manipulate the feature representations of the benign
encoder. And, the learning rate and batch size mainly affect the
optimization process during training but do not directly control
the feature manipulation. On the other hand, PA-CL may
exhibit robustness to hyperparameters such as the learning rate
and batch size. This means that even if the hyperparameters
are not optimally tuned, the attack can still achieve a high
ASR due to the model-dependent characteristics of various
hyper-parameters.

TABLE IV
ASR OF PA-CL VS. LEARNING RATE/BATCH SIZE

TABLE V
RESULTS OF PA-CL WHEN ATTACKING THE IMAGE ENCODER

PRE-TRAINED ON IMAGENET AND CLIP

H. Evaluation on ImageNet and CLIP

At last, we evaluate the effectiveness of PA-CL on two
larger datasets: ImageNet released by Google and multi-modal
dataset CLIP [1] released by OpenAI, which pre-trained on
400 million (image, text) pairs collected from the Internet.

For attacking image encoder pre-trained on ImageNet,
we use the ImageNet dataset to build the benign encoder and
then select the target downstream dataset and the target class.
Specifically, we choose “truck”, “priority sign”, and “digit
one” as the target classes for the datasets STL10, GTSRB,
and SVHN, respectively. Note that we resize each image in
the downstream datasets to be 224×224×3 to match the size
of image in ImageNet.

For attacking encoder pre-trained on CLIP, we first obtain
the pre-trained CLIP encoder, which includes ResNet50 for the
image encoder and a Transformer as the backbone for the text
encoder. Similarly, we consider a target downstream task and
a target class. We choose “truck”, “priority sign”, and “digit
one” as the target classes for the datasets STL10, GTSRB, and
SVHN, respectively.

We can observe the results in Table V that PA-CL can
achieve 82.7% ASR on average with stable prediction accu-
racy for non-target samples when the pre-training dataset is
ImageNet. This indicates that PA-CL is capable of effectively
manipulating the feature representations of the target samples
to achieve the desired misclassifications even under practical
scenarios. Our results also show the practical applicability of
PA-CL in scenarios where the image encoder is pre-trained on
large amounts of unlabeled data and (image, text) pairs (i.e.,
CLIP) and can achieve 84% ASR on average. This highlights
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Fig. 6. ASR of PA-CL and baseline attacks against early stopping.

the robustness and versatility of PA-CL, as it can effectively
adapt to the complex representations learned by the encoder
and exploit them to generate poisoned encoders for successful
attacks.

V. DEFENSES

In this section, we discuss some existing defenses for
defending poisoning attacks, and then evaluate potential
defenses against our attack and other baselines.

A. Leveraging Existing Defenses Against Poisoning Attacks

Existing defenses against data poisoning attacks can be
generally categorized into three types: pre-training defenses,
in-training defenses, and post-training defenses (detailed in
Section VI-C). However, these are primarily designed for
traditional machine learning scenarios and few defenses are
available for the contrastive learning setting. Thus, we consider
three simple yet effective defenses against poisoning attacks
and extend them to contrastive learning setting.

1) Early Stopping (ES): Early Stopping is an in-training
defense against poisoning attacks, which is widely adopted
in avoiding unnecessary training iterations and improving
robustness of the pre-trained model. Since our PA-CL relies
on enough training epochs of both pre-training process and
downstream process, early stopping may mitigate PA-CL to
some extent if the encoder or the downstream classifier is
trained using less epochs.

2) Fine-Pruning (FP): Fine-Pruning [31] is a post-training
defense against data poisoning attacks. The poisoned effect
of a potentially poisoned classifier can be removed by fine-
tuning using a subset of clean training dataset. In practical
scenario, the defender can have two ways to mitigate the
poisoned effect, by using some clean data to either fine-tune
the poisoned encoder or fine-tune the poisoned downstream
classifier.

3) Model Distillation (MD): Model Distillation [32] is a
post-training defense against data poisoning attacks which
involves transferring knowledge from a larger model to a
smaller one. By doing so, one aims to create a more robust
and clean representation of the underlying data. This process
helps mitigate the poisoned effect on the pre-trained encoder,
enhancing its resilience against adversarial attempts to poison
the model.

TABLE VI
PTA OF PA-CL AND BASELINES FOR EARLY STOPPING

It is worth noting that the performance of these two defenses
depends on the setting of some key parameters. In early
stopping defense, the number of epochs of encoders deter-
mines the utility ability of encoders. In fine-pruning defense,
the ratio of clean images to fine-tune the encoder can be
adjusted to mitigate poisoning attacks. In our evaluation,
we use CIFAR-10 or STL-10 as our pre-training dataset and
GTSRB as the downstream dataset.

B. Performance Results

Fig. 6 demonstrates the performance of the early stopping
defense against PA-CL and baselines for different epochs of
encoders. We report the ASR of the early stopping defense
when epochs change. We can observe that early stopping can
effectively reduce the ASR when using less epochs to pre-train
an encoder. Generally, the ASR of different attacks remains
relatively high when epochs of encoders are over 100 and the
ASR is reduced a lot when the epoch is 50. Nevertheless, PA-
CL still achieves the highest ASR among different attacks.
However, it is indicated in Table VI that early stopping also
reduces the prediction accuracy of the downstream classifiers
built on the poisoned encoder. Thus, this method sacrifices the
utility of the encoders.

Fig. 7 shows the performance of the fine-pruning defense
against PA-CL and baselines for different ratios of clean
images in the pre-training dataset to fine-tune the poisoned
encoder/downstream classifier. It can be seen that the ASR is
reduced by 50% on average when the ratio of clean images
is higher than 30% at the cost of sacrificing a lot of time to
gather a large amount of clean data manually, and the ASR
of different attacks can be reduced by the increased ratio of
clean images. To fine-tune the poisoned downstream classifier,
the ASR reduces even faster, because the downstream dataset
is smaller than the pre-trained dataset and the defender could
have stronger capability to mitigate poisoning attacks using
less clean images.

Fig. 8 illustrates the performance of the model distillation
defense against PA-CL and baselines for different training
epochs. We can observe that the ASR is reduced by 50%
on average when the epoch is more than 200 for both
CIFAR-10 and STL-10 datasets. Notably, the effectiveness
of MD is more pronounced when encountering attacks such
as WB, ICP, and PE. This is because these three attacks
introduce poisoned data during the training of the pre-trained

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on January 14,2024 at 02:06:55 UTC from IEEE Xplore.  Restrictions apply. 



2422 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 7. ASR of PA-CL and baseline attacks against fine-pruning. First row:
pre-training an encoder. Second row: training a downstream classifier.

Fig. 8. ASR of PA-CL and baseline attacks against model distillation.

encoder, and MD can successfully mitigate the impact of
this poisoning method. In addition, PA-CL exhibits the high-
est resilience to the MD defense, which can be attributed
to its optimization process that does not involve poisoned
data.

Furthermore, we evaluate the ASR of PA-CL against dif-
ferent defense methods under different encoder architectures.
The results are depicted in Fig. 9. Specifically, we employ
ResNet18, VG11, DenseNet121, and MobileNet-v2 for train-
ing the encoder. When using the ES method, we pretrain
the encoder for 200 epochs. For the FP method, we set
the ratio of clean images to 10%. When applying the MD
method, we train the encoder for 100 epochs. From Fig. 9,
it can be observed that MD exhibits the strongest defense
capability compared to ES and MD methods. Generally,
the ASR of PA-CL remains at approximately 70% when
confronted with different defense methods. This demon-
strates the robustness of PA-CL against various defense
techniques. Notably, VGG11 is more susceptible to attacks
compared to other encoder architectures due to its simpler
architecture.

Fig. 9. ASR of PA-CL against different defense methods under different
encoder architectures.

VI. RELATED WORK

A. Contrastive Learning

Contrastive learning is an emerging paradigm that leverages
abundant unlabeled data to pretrain encoders, which can then
be utilized for various downstream tasks. It has achieved
significant success across a variety of fields. In the computer
vision field, unsupervised training with unlabeled images has
been explored extensively [33], [34], [35], as well as utilizing
(image, text) pairs to achieve state-of-the-art prediction per-
formance [1], [36], [37]. For the natural language processing,
large pre-trained language models [38] are trained on vast
amounts of unlabeled text data, enabling them to use in tasks
such as text classification [39] and machine translations [7].
Furthermore, graph neural networks can learn effective rep-
resentations of graphs, enabling improved performance in
graph-related tasks by applying contrastive learning [40], [41].

B. Poisoning Attacks

Poisoning attacks aim to manipulate the integrity of the
training phase (i.e., training dataset collection and the learning
process) of a learning system. Most existing poisoning attacks
focus on compromising the training dataset collection process,
which are also known as data poisoning attacks [42], [43],
[44]. Different from data poisoning attacks, our poisoning
attack focuses on compromising the learning process in the
pre-training phase of contrastive learning.

Generally, poisoning attacks can be categorized into two
types based on their goals: untargeted poisoning attacks [45],
[46] and targeted poisoning attacks [17], [24], [47], [48], [49],
[50]. The former aims to degrade the performance of the
learned model for testing samples, which eventually leads to a
denial-of-service attack. The latter can cause misclassification
on a specific target sample while maintaining the functionality
of the model for legitimate data.

Previous targeted poisoning attacks mainly focus on super-
vised learning [42] or semi-supervised learning [25], leaving
its vulnerability in contrastive learning largely unexplored.
Recently, Liu et al. [12] propose targeted data poisoning
attacks to contrastive learning; He et al. [10] explore indis-
criminate data poisoning attacks within the context of
contrastive learning. However, both attacks do not directly
poison the pre-trained model but rather the training data in
contrastive learning, which is actually the focus of our attack.
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C. Defenses Against Poisoning Attacks

Existing defenses can be broadly classified into three main
categories: pre-training defenses, in-training defenses and
post-training defenses.

Specifically, pre-training defenses are designed to iden-
tify poisoned samples before the training process [51]. For
instance, Paudice et al. [52] and Peri et al. [53] detect poi-
soned data by identifying inconsistencies in labels between
a training sample and its nearest neighbors. Chen et al. [54]
distinguish poisoned data and benign samples by comparing
the prediction results of both the target and mimic models.

In-processing defenses detect poisoned data by assessing
their influence on the performance of the trained model [43],
[55]. For example, Carlini [25] devise a defense strategy that
assigns a score to each unlabeled training sample, which is
computed based on the influence by its nearest neighbors
on the labels predicted by the initial model during training.
By leveraging these scores, it can effectively detect and
subsequently remove the poisoned data from the training set.

In the case of post-processing defenses, their primary objec-
tive is to mitigate the effect of poisoned training data from
a trained model [51], [56]. These methods typically involve
retraining or fine-tuning the model using a modified training
procedure that effectively removes the influence of poisoned
data on the model.

It is worth noting that all these defenses may not be directly
applicable to defense our proposed attack, PA-CL because our
attack methodology does not involve the injection of poisoned
data into the training dataset.

VII. CONCLUSION

In this work, we have presented PA-CL, a more surreptitious
targeted poisoning attack in contrastive learning, by directly
poisoning the encoder without injecting poisoned samples into
the training set. To launch the attack, PA-CL maximizes the
similarity between the feature of the target sample and the
averaged feature that belongs to the feature space of the
desired class. Extensive experimental results on four real-
world datasets show that PA-CL can achieve a high ASR,
demonstrating that the encoder is potentially vulnerable to our
attack. Our work indicates that the threat of targeted poisoning
attacks against contrastive learning is largely underestimated,
which also calls for effective protections in the near future.
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