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Connectivity-Based Space Filling Curve Construction Algorithms
in High Genus 3D Surface WSNs
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Many applications in wireless sensor networks (WSNs) require that sensor observations in a given monitoring
area are aggregated in a serial fashion. This demands a routing path to be constructed traversing all sensors
in that area, which is also needed to linearize the network. In this article, we present SURF, a Space filling
cURve construction scheme for high genus three-dimensional (3D) surFace WSNs, yielding a traversal path
provably aperiodic (that is, any node is covered at most a constant number of times). SURF first utilizes the
hop-count distance function to construct the iso-contour in discrete settings, and then it uses the concept of
the Reeb graph and the maximum cut set to divide the network into different regions. Finally, it conducts
a novel serial traversal scheme, enabling the traversal within and between regions. To the best of our
knowledge, SURF is the first high genus 3D surface WSN targeted and pure connectivity-based solution
for linearizing the networks. It is fully distributed and highly scalable, requiring a nearly constant storage
and communication cost per node in the network. To incorporate adaptive density of the constructed space
filling curve, we also design a second algorithm, called SURF+, which makes use of parameterized spiral-like
curves to cover the 3D surface and thus can yield a multiresolution SFC adapting to different requirements
on travel budget or fusion delay. The application combining both algorithms for in-network data storage and
retrieval in high genus 3D surface WSNs is also presented. Extensive simulations on several representative
networks demonstrate that both algorithms work well on high genus 3D surface WSNs.
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1. INTRODUCTION

The wireless sensor network (WSN) community has envisioned a large variety of ubiq-
uitous monitoring and actuation applications [Liu et al. 2013; Yang 2014; Lin et al.
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Fig. 1. Two typical 2D SFCs.

2015]. Although two-dimensional (2D) planar and simple 3D volume settings are as-
sumed in most earlier studies on WSNs [Sarkar et al. 2013; Tan et al. 2014; Li et al.
2014; Jiang et al. 2015], there have been emerging interests in scenarios where sensors
are typically deployed in complex-connected 3D surfaces [Yu et al. 2012, 2013; Wang
et al. 2015]. Examples of such applications include the fire prevention in the corridors
of buildings [Fischer and Gellersen 2010], the monitoring of coal mine tunnels for dis-
aster warning [Li and Liu 2009], as well as the monitoring in underground tunnels
used in gas, water or sewer systems [Akhondi et al. 2010]. These kinds of WSNs, often
of a complex-connected 3D setting with non-trivial topology, are modeled as high genus
3D surface WSNs [Yu et al. 2012, 2013; Wang et al. 2015], where genus1 can be simply
regarded as the handle on the sphere.

In this article we focus on constructing a space filling curve (SFC) to linearize a
high genus 3D surface WSN, that is, “traversing” the high genus 3D surface network
by a single path. In the following, we look back on related works of the SFC and
its applications and constructions in WSNs, offering a full-spectrum understanding
toward its advancement in WSNs, followed by our contributions.

1.1. Existing Work

1.1.1. The Concept of the SFC. The concept of the SFC came out in the late 19th century
and is accredited to Peano, who proved the existence of a curve that passes through
every point of a closed unit square [Peano 1890]. Thereafter, various SFCs have been
proposed for 2D and 3D settings [Sagan 1994]. Most of these curves are recursively
constructed, for example, the Hillbert curve in Figure 1(a) with respect to three iter-
ations, while some are non-recursive, for example, the Cantor curve in Figure 1(b).
However, in continuous settings almost all existing SFCs are constructed in a square
or cube region, and little work has been done to extend the SFC construction to other
shapes, let alone solutions in discrete settings.

1.1.2. Applications of the SFC in WSNs. In discrete WSNs, enforcing a linear order of
the sensor nodes via the SFC has broad applications, one of which is the serial op-
eration on both sensor nodes and sensor data. In Patil et al. [2004] and Mostefaoui
et al. [2015], serial fusion techniques were proposed for collaborative signal detection
by the traversal along a SFC, which ensures visiting the nodes in a linear order. This
kind of technique enables the detection process to stop as soon as sufficient evidences
have been collected. In Viana et al. [2006], the authors presented a dual addressing
space representation architecture for self-organizing networks. In Chung et al. [2011],

1Genus is one of the most fundamental concepts in the field of algebraic topology [Massey 1987], which can
be simply regarded as the number of handles on the sphere [Hatcher 2002]. Its formal definition is presented
in Section 2.1. Without leading to confusion, we interchangeably use the terms “genus” and “handle.”

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 22, Publication date: August 2016.



Connectivity-Based Space Filling Curve Construction Algorithms 22:3

the authors proposed an algorithm for processing similarity search queries in WSNs.
They both applied the Hilbert curve to linearize the network, establishing a bijec-
tive mapping between the SFC and the node’s index/logical address, so standard 1D
indexing/addressing mechanisms can be applied.

Another application of the SFC in WSNs is the motion planning of mobile beacons.
Bahi et al. [2008] and Koutsonikolas et al. [2007] considered the localization of the
WSN, where a single mobile beacon aware of its position was utilized to help other
nodes to localize themselves by moving to cover the entire network. The paths that
the mobile beacon should travel along are designed to follow the SFCs. Similar ideas
can also be helpful for the battery recharge of the sensors [Xie et al. 2012] or the data
collection by the data mules near the sink [Sugihara and Gupta 2011].

1.1.3. SFC Construction in WSNs. The previous works mainly focus on applying the
SFC for various purposes in WSNs. How to construct the SFCs, however, is not their
concentration. The only research concentrates on constructing the SFCs in WSNs is
presented in Ban et al. [2013]. The proposed method can generate an SFC that densely
covers any planar geometric domain, with a coverage density proportional to the length
of the curve, but it cannot be directly utilized in 3D scenarios. A practically potential
solution for visiting nodes in a 3D network could be based on the random walk [Spitzer
2001]. The problem, however, is that when choosing its next hop, the random walk is
essentially “blind.” Intuitively, a random walk visits a new node with high probability at
the initial stage. But after a certain proportion of nodes have been visited, the random
walk is more likely to take a (infinite) long period to aimlessly walk in the network,
anchoring its hope on encountering the last few unvisited nodes earlier. Therefore,
the random walk cannot ensure deterministic node covering results with restricted
traversal path length.

It is noted that the task of SFC construction differs significantly from the packet
routing path design in high genus 3D surface WSNs. Packet routing aims at connecting
two given nodes by a routing path. In high genus 3D surface WSNs, the difficulty mainly
lies in naming/addressing the sensor nodes before routing among them. Therefore,
existing works [Yu et al. 2012, 2013; Wang et al. 2015] focus on seeking efficient
naming/addressing schemes, with different network decomposition methods. However,
the goal of SFC construction is to design a path traversing all sensor nodes, which is
a coverage-critical selection during the traversal. In this case, naming/addressing the
nodes is no longer the primary concern; the well-designed traversal scheme is.

1.2. Challenges and Our Contributions

In this article, we present SURF, a novel Space filling cURve construction scheme for
high genus 3D surFace WSNs, yielding a path provably aperiodic (any node in the
path is covered/visited at most a constant number of times). The name of our proposed
scheme, SURF, can be interpreted as the surface filling or surfing on 3D surfaces.

The intuition of SURF stems from the observation in the continuous domain—the iso-
contours of a closed spherical (genus-0) surface in the smooth setting naturally form
an embryonic form of the SFC (Figure 2(a)), and directly connecting them forms an
SFC, shown in Figure 2(b). With regard to high genus surfaces, the primary challenge
lies in the way we deal with the genuses, which may incur two or more contours of
an iso-value (see Figure 4(a)). There is only one contour of the iso-value 1, but two
contours of the iso-value 10 due to the existence of the genus.

The main idea behind SURF is to divide the surface into a set of genus-0 regions
by cutting off the genuses, followed by constructing the SFC in each region separately
before connecting all SFCs in a practical way. The particular problem we are facing in
discrete networks, however, is more challenging: (1) How do we define the iso-contour
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Fig. 2. Connecting iso-contours forms a SFC of a sphere. (a) Iso-contours of a shpere. (b) A SFC of a sphere.

Fig. 3. The pipeline of SURF algorithm. (a) The triangulated genus-2 torus network with 1,924 nodes; Avg
deg is 17.7. (b) The Reeb graph of the network. (c) The Reeb graph after the bisection operation. (d) The
traversal sequence of SURF in different regions. (e) The iso-distance contour lines of the network. (f) The
regions of the Reeb graph in (b). (g) The regions of the Reeb graph in (c); the cut pairs are represented by red
and green dots. (h) The SFC generated by SURF, with link edges colored in pink. Different arcs and regions
of the Reeb graph are distinguished by colors.

in a discrete 3D surface network with mere connectivity information, such that the iso-
contour is a connected and closed curve? (2) How do we identify genuses and further
cut them off to form different regions? (3) How do we ensure that the length of the
generated SFC is bounded?

To address the first challenge, we propose to use the hop-count distance function to
construct the iso-contour in discrete settings (detailed in Section 3.1). For the second
one, the concept of the Reeb graph and the maximum cut set are utilized to realize the
network segmentation (detailed in Section 3.2). After these procedures, the network
is divided into different regions. We design schemes to guarantee the traversal within
and between regions, yielding an SFC that is provably aperiodic (see Theorem 4.1 in
Section 3.3). The whole process, as an example, is shown in Figure 3.

To the best of our knowledge, SURF is the first high genus 3D surface WSNs targeted
and pure connectivity-based solution for the SFC construction in WSNs. SURF offers
several salient features. First, it requires connectivity information only, without the
reliance on the location or distance measurement. Second, it does not rely on any
particular communication model, only assuming a constant maximum transmission
range, which is a common case in practical WSNs. Third, it is fully distributed and
scalable, with a nearly constant storage and communication cost of every node.
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Fig. 4. Iso-distance function and its Reeb graph on a torus.

In addition, we also design a second algorithm, called SURF+, that incorporates
adaptive density of the constructed SFC and thus can yield a multiresolution SFC
adapting to different requirements on travel budget or fusion delay. We also discuss
principles and implementations of both algorithms, provide proof of their correctness
and report on their performance evaluation through extensive simulations. Additional
application combining both algorithms for in-network data storage and retrieval in
high genus 3D surface WSNs is also presented.

The remainder of this article is organized as follows. In Section 2, we introduce some
preliminary knowledge of our proposed SURF algorithm. In Section 3, we describe
the implementation of SURF algorithm. Further discussions on the SURF algorithm,
as well as the SURF+ algorithm and the application for in-network data storage and
retrieval are presented in Section 4. The performances of SURF, SURF+, and the
application are evaluated in Section 5. Finally, Section 6 concludes the article.

2. PRELIMINARY

Before digging into the problem of SFC construction, we first briefly introduce several
notions and definitions in algebraic topology and computing geometry. For further
theoretical background, we refer interested readers to Massey [1987], Hatcher [2002],
and Pascucci [2011].

2.1. Cut and Genus

In algebraic topology, a cut C is referred to as a disjoint closed simple curve on a
connected and orientable surface M, where M is orientable, indicating it has two
distinct sides. One notable property of a cut is its ability to locally disconnect the
topology of M. Suppose a set C = {C1, C2, . . . , Cn} is a cut set on M, whose cardinality
is n, and then C is a maximum cut set Cmax of M if and only if (1) any two cuts in Cmax
belong to different homotopy classes, that is, one cut cannot be smoothly deformed to
another without leaving the surface; (2) M\(C1 ∪ C2 ∪ . . . ∪ Cn) is connected; and (3)
M\(C1 ∪ C2 ∪ . . . ∪ Cn+1) is disconnected. Accordingly, the genus of M is defined as the
cardinality of the Cmax of M, indicating the maximum number of cuts without rendering
M disconnected [Erickson and Har-Peled 2004].

The notion of the genus is closely associated with the classification of orientable
closed surfaces up to homeomorphism: For a given integer n ≥ 0, there is exactly one
topological type, “the surface of genus-n,” which can be obtained by attaching n handles
onto a simple closed 3D surface. For example, a sphere is a genus-0 surface, and any
cut will render it disconnected; a torus is a genus-1 surface, as shown in Figure 4, with
at most one cut on it while not leading to its disconnection.
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Motivated by Yu et al. [2013] where the surface M is decomposed to a simple genus-0
topology using cuts, our idea is to exploit a similar method to generate a sliced surface
with which SURF is able to extract the iso-distance contour and the Reeb graph, and
we hereby put forward a novel serial traversal scheme for the SFC construction.

2.2. Iso-distance Contour

For a scalar, real-valued function f : M → R, the level set of an iso-value h is the
set of points f −1(h) = {p ∈ M| f (p) = h} [Carr et al. 2004]. A contour is a connected
component of a level set, that is, a curve along which f has a constant value [Gray
et al. 2006]. Figure 4(a) illustrates a set of successive iso-distance contours on a torus
with a mapping to an integer set {0, 1, . . . , H} of different height values.

In a discrete network with mere connectivity information, however, it is not straight-
forward to define the level set where no height value or geodesic distance2 can be
derived. What is more, even if we can find a metric to represent the level set, it is still
unclear whether there is a connected component to form the contour.

To tackle this problem, SURF makes use of the hop-count distance, an analogy of the
Euclidean/geodesic distance in continuous domains, to define the real-valued function
f . Meanwhile, SURF is designed to ensure the existence of the contours (detailed in
Section 3.1). Note that one challenge here is, when a level set is separated to two or
more contours due to the existence of the genuses (e.g., f −1(10) in Figure 4(a)), SURF
is supposed to have the ability to find out where the genuses are. For this purpose, the
Reeb graph is used to extract a maximum cut set that cuts off the genuses of M.

2.3. Reeb Graph and Cut Identification

A Reeb graph is a topological structure proposed in Reeb [1946]. Briefly speaking, a
Reeb graph R of a real-valued function f explicitly reveals the evolution of its level set
f −1(·). When the number of the contours of f −1(·) increases or decreases, the gradient
of f will vanish at the separating points of the contours. Those points are called critical
points (theoretically, there are three types of critical points, namely, minima, saddles,
and maxima [Reeb 1946].) of f , for example, Saddle A and Saddle B in Figure 4(b),
which shows an example of the Reeb graph.

Given a Reeb graph, we turn to extracting a maximum cut set Cmax from M. Our
approach is motivated by the following theorem.

THEOREM 2.1. The Reeb graph of a closed orientable genus-n 2-manifold has exactly
n loops [Cole-McLaughlin et al. 2003].

Theorem 2.1 implies that we can first identify all loops of the Reeb graph, thereby
finding a cut for each loop. Specifically, a loop in a Reeb graph is associated with
two degree-3 nodes: One starts the loop and the other ends it; see the two saddles in
Figure 4(b). Thus, we have

Definition 2.2. An arc of the Reeb graph of M is a loop-end arc, if it is merged from
two different arcs.

See Figure 3(b) for an example where the blue and yellow arcs are merged into a
loop-end one colored in pink.

COROLLARY 2.3. Each loop in the Reeb graph of M corresponds to one loop-end arc.

As such, in order to identify a cut for one loop, our method is to find the bisection
in loop-end arc that disconnects this loop. Figure 3(c) shows the Reeb graph after

2The geodesic distance on a 3D surface can be regarded as the (locally) shortest path between two nodes on
the surface.
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the bisection operation. We will present the implementation in a discrete network in
Section 3.2.

3. SURF ALGORITHM

Given a high genus 3D surface WSN, SURF is derived from its triangular form. How-
ever, the triangulation procedure itself is out of the scope of this work. Numerous recent
studies, for example, Funke and Milosavljevic [2007], Sarkar et al. [2009], and Zhou
et al. [2011], have proposed simple and distributed algorithms to obtain the triangular
structure and can be used in conjunction with our approach. The triangular structure
offers a shape representation of the high genus 3D surface, as shown in Figure 3(a).
Without leading to confusion, hereafter we still refer to this triangular structure as the
high genus 3D surface, denoted by M, with its vertex (node) set V = {vi} and edge set
E = {eij = (vi, v j)|v j is called the neighbor of vi}. Given a triangular structure, SURF
follows three steps for the SFC construction:

(1) Contour Construction: to lay the groundwork for regional division (see Figure 3(e)).
(2) Maximum Cut Set Identification: to cut off the genuses and thus divide the network

to different regions (see Figure 3(g)).
(3) Serial Traversal Scheme: to finally construct the SFC by the traversal intra- and

inter-regions (see Figure 3(h)).

3.1. Contour Construction

The first step of SURF is to construct the level set and its corresponding contour lines3

of M so, in each contour line, it is trivial to locally construct a SFC. To that end,
we first establish a hop count distance function f : M → L, where L is the integer
set representing the hop count. Specifically, a randomly selected root node r initiates a
flooding across the whole network. After receiving a flooded message from r, every node
knows its hop count distance l to r, and then records its level index with l. Therefore,
for any node vi with the level index l, we have f (vi) = l. Accordingly, the level set of hop
count distance l is given by f −1(l) = {eij = (vi, v j) ∈ E | f (vi) = f (v j) = l}.

Recall that a contour in continuous settings is a connected component of a level set.
In the following, we show that in discrete networks, a connected contour line of a level
set also exits, which is defined based on the following notion.

Definition 3.1. The l-neighbor for any edge eij in f −1(l) is defined as N(eij, l) =
{(eij, eik) | eij and eik have a common vertex vi ∈ V, and eij, eik ∈ f −1(l)}.

Then we introduce the concept of iso-distance contour line and its property in discrete
settings.

Definition 3.2. An iso-distance contour line (iso-contour for short) of f −1(l), O(l), is
defined as a neighbor graph of f −1(l), such that:

(1)
⋂

∀O(l)
O(l) = ∅; and (2)

⋃

∀O(l)
O(l) = ⋃

eij∈E
N(eij, l).

As the iso-contour of f −1(l) is defined as the neighbor graph of f −1(l), we have the
following lemma.

LEMMA 3.3. Any two nodes in an iso-contour of f −1(l) is l-connected, where two nodes
in f −1(l) is l-connected, if between them there is a path the nodes on which are all in
f −1(l).

3We use the “contour line” in discrete network settings to distinguish it from the “contour” in continuous
scenarios.
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Fig. 5. (a) The iso-contour O(l) is connected with O(l + 1) and O′(l + 1). (b) The iso-contour O(l) is connected
with O(l + 1) only. (c) The iso-contour O(l + 1) is connected with O(l) and O′(l).

Lemma 3.3 implies the connectivity of an iso-contour, while there is no guarantee
of its closeness. In fact, there exist special nodes, so-called “dead-ends,” rendering the
iso-contour unclosed. They are closely related to the following parent/child relationship.

Definition 3.4. For any epc = (vp, vc) ∈ E , if f (vp) = l, f (vc) = l+1, then vp is a parent
node of vc; vc is a child node of vp.

Definition 3.5. A node is a dead-end if it has no child nodes. Correspondingly, an
edge eij = (vi, v j) is a dead-end edge if either vi or v j is a dead-end.

We then have the following theorem that guarantees the closeness of an iso-contour.

THEOREM 3.6. An iso-contour with dead-end edges eliminated is a connected and
closed cycle.

PROOF. See Appendix A.

So far, it is trivial to establish the discrete counterpart of a continuous contour: to
treat every dead-end edge as a double-edge (detailed in Section 3.3). For high genus
surfaces where there exist two or more iso-contours in a level set (see the two iso-
contours colored in black of f −1(14) in Figure 3(e)), we utilize the Reeb graph to cut
off the genuses and thus divide the network into regions. Further strategies are then
proposed to guarantee the traversal intra- and inter-regions.

3.2. Maximum Cut Set Identification

Based on the hop count distance function, we next use the Reeb graph to identify the
maximum cut set of M. To that end, a distributed algorithm similar to that in Yu et al.
[2013] is carried out, which evolves through four major sub-steps.

The first sub-step is to identify nodes in each iso-contour of f −1(l) with an iso-contour
ID. This is done by randomly selecting one landmark (so-called g-landmark) in an iso-
contour. After the g-landmark is selected, it performs flooding within f −1(l), with the
messages containing its iso-contour ID and level index l. As such, all nodes in the
iso-contour of f −1(l) have the knowledge of the iso-contour ID.

Second, all the iso-contours in M are composed to regions (arcs) of the Reeb graph.
We say two iso-contours O(l) and O(l + 1) are connected if there exists a node v in
O(l) that has a neighbor v′ in O(l + 1). Then, v and v′ will notify this connection to
their corresponding g-landmarks. In particular, there exist three cases related to this
connection, as shown in Figure 5. Correspondingly, the g-landmark notifies all nodes
in O(l + 1) if O(l + 1) is only connected with O(l). In this case, the nodes in O(l + 1) are
assigned a region ID the same as that of O(l); otherwise, the nodes in O(l + 1) will be
assigned a new region ID.
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Fig. 6. Several cases in serial traversal. (a) The traversal in an uncut iso-contour. (b) The traversal in a cut
iso-contour. (c) The traversal in an iso-contour with dead-ends.

With the aforementioned two sub-steps, every node has a region ID. The result of the
Reeb graph is shown in Figure 3(f), where the Reeb graph regions are distinguished in
colors.

Next, having the Reeb graph, all loop-end regions (arcs) can be notified directly: If the
g-landmark in O(l +1) is notified that it is connected with O(l) and another iso-contour
O′(l) (the case in Figure 5(c)), then nodes in O(l + 1) and all other iso-contours in the
same region are notified to be in a loop-end region.

Finally, to extract the maximum cut set Cmax, each loop-end region performs a bisec-
tion operation to extract a cut. Consequently, the loop-end region Im is bisected and a
merged region I′

α (respectively, I′
β) is generated. Then it is simple to identify a cut Ci:

Each node v in loop-end region Im sends a message to its neighbor v′ in Im. If v′ has a
different region ID with v, then v and v′ are notified to be cut nodes. Figure 5(g) depicts
the result of the emerged regions and cut pairs.

3.3. Serial Traversal Scheme

After cut identification, M is divided into regions, each of which contains several (uncut
or cut) iso-contours. Aiming at a SFC for the whole network, we first conduct the SFC
in each iso-contour, thereby connecting those curves for intra- and inter-regions.

The SFC construction starts from the root node r, which randomly chooses a neighbor
as the next hop, say, p, and traverses to it. Then p marks itself as visited, and the
traversal path e(r, p) becomes the first section of the SFC. After that, p finds its next
hop node q following S-NEXTHOP in Algorithm 1, which deals with four situations
according to the spatial relationship between p and q.

Situation 1: p and q are within one uncut iso-contour. This situation happens when p
is not in the loop-end region and p has an unvisited neighbor q in the same iso-contour.
Recall a simple way to generate a local SFC in an iso-contour in Theorem 3.6: In this
situation, if p is a link node (the first visited node in its iso-contour), then the next
couple of traversals are all of this situation, until p has no unvisited neighbor in the
same iso-contour. Then Situation 3 occurs. See Figure 6(a) for an example.

Situation 2: p and q are within one cut iso-contour. This situation happens when p is
in the loop-end region and p has an unvisited neighbor q in the same iso-contour. It is
noted that a cut iso-contour is part of an uncut iso-contour, and cut nodes are end-points
of cut iso-contours. This motivates us to start the traversal from a cut node in a cut
iso-contour and to “exit” the cut iso-contour from a c-landmark (a randomly selected
node having at least one non-dead-end child). This is done by a local flooding within
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the cut iso-contour from each cut node and each c-landmark after cut identification.
As a result, each node in the cut iso-contour knows its next-hop node on the shortest
path to each cut node and each c-landmark. When p is a link node of a cut iso-contour,
it first follows the shortest path pointer to one of the cut nodes in its iso-contour and
then starts traversal as in Situation 1, until p has no unvisited neighbor in the same
iso-contour. After that, the last node follows the shortest path pointer to the c-landmark
in the iso-contour, and then Situation 3 occus. See Figure 6(b), for instance.

Situation 3: p and q are in two different iso-contours. This situation happens when p
has no unvisited neighbor in its iso-contour in Situation 1 or p is a c-landmark without
unvisited neighbor in its iso-contour in Situation 2. In the former situation, p will
choose an unvisited neighbor in a neighboring iso-contour as its next hop (note that if
all the unvisited neighbors of p are dead-ends, then p will choose its previous hop node
as its next hop to guarantee that the link node in the next iso-contour is non-dead-end).
In the latter situation, as c-landmark is selected with at least one non-dead-end child,
it directly chooses an unvisited neighbor in a neighboring iso-contour as its next hop. If
not, then Situation 4 occurs. See the link edges connecting the two iso-contours colored
in pink in Figure 3(h).

Situation 4: p and q are in two different regions. This situation happens when p has
no unvisited neighbor in the same region. To achieve a traversal inter-region, we use
r-landmarks for piloting, where the r-landmarks are randomly selected from boundary
nodes (not cut nodes and having neighbors in another region) in the same region. The
r-landmark selection process can be done in a region similar to g-landmark selection
in an iso-contour. As a result, each region has one or more r-landmarks (depending on
how many regions it borders). Next, each r-landmark in one region initiates a flooding
to know the next-hop node on the shortest path to those r-landmarks in its neighboring
region. Meanwhile, by doing so, the high-order topological features (i.e., regions and
their connections) of M are identified by r-landmarks. In this situation, p will choose
an unvisited r-landmark that has a minimum differential value of level index as its
next hop. As an example, Figure 3(d) shows the traversal order in different regions of
the network in Figure 3(a).

Note that the NEXTHOP algorithm does not consider q as a dead-end. That is because,
on the one hand, dead-ends of an iso-contour in f −1(l) have no effect on the l-connectivity
of other nodes in the iso-contour (by Lemma A.1) and, on the other hand, in our scheme
several methods are utilized to ensure the link nodes are not dead-ends. So before p
finds its next node by the NEXTHOP algorithm, it first checks whether it has an unvisited
dead-end neighbor d; if it does, it just goes to d, comes back, and continues to seek for
its next hop; d marks itself visited. See Figure 6(c).

The path stretches as the serial traversal goes on and, in the end, an SFC of M is
constructed, which seems like the shell on the shape of the network topology. Figure 3(h)
shows the conducted SFC of the genus-2 torus network in Figure 3(a).

4. DISCUSSIONS

4.1. Discussions on SURF

4.1.1. Node’s Covered Times. From the aforementioned serial traversal scheme, it is
not hard to arrive at the following theorem that ensures the validity and feasibility of
SURF.

THEOREM 4.1. The SFC generated by SURF ensures that every node in M is covered
at most (maxvi∈V nd(vi) + nr + 2) times, where nr is the number of the regions in the
network, and nd(vi) is the number of vi ’s dead-end neighbors.
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ALGORITHM 1: S-NEXTHOP(p)
cFlag ← false; rFlag ← false;
if p is link node of a cut iso-contour then

q ← next hop on the shortest path to one randomly chosen cut node in p’s iso-contour;
else if p is cut node then

forall the l-neighbors ngb of p do
if ngb is unvisited then

q ← ngb; cFlag ← true; break
end

end
if cFlag = false then

p follows the shortest path to the c-landmark in p’s iso-contour; q ← the c-landmark;
end

else
forall the l-neighbors ngb of p do

if ngb is unvisited then
q ← ngb; cFlag ← true; break

end
end
if cFlag = false then

forall the unvisited neighbors ngb of p do
if ngb.level = p.level ± 1 then

q ← ngb; rFlag ← true; break
end

end
if rFlag = false then

p follows the shortest path to an unvisited r-landmark; q ← the r-landmark;
end

end
end
return q

PROOF. Without regard to the dead-ends, we consider the following four situations:
the traversal (1) within an uncut iso-contour, (2) within a cut iso-contour, (3) between
two consecutive iso-contours within one region, and (4) between two regions. First, the
traversal within an uncut iso-contour generates a local SFC based on Theorem 3.6, and
every node is covered only once. Second, the traversal within a cut iso-contour results
in a local SFC, due to the cut node and the c-landmark as the “entrance” and “exit”
indicator in the cut iso-contour, and every node is covered at most 3 times, for example,
the c-landmark if it is also the link node of the iso-contour. Third, two consecutive
local SFCs within one region are connected by the link edge, where the link node is
designed non-dead-end, and thus the connection is guaranteed; note that the covered
times of the nodes associated with link edges are counted in the traversal within their
respective cut/uncut iso-contours. Finally, the SFCs in different regions are connected
by the r-landmarks in a sorted order, and there may be some node in M to be covered
(nr − 1) times, in the worst case, if it is shared by all the traversals inter-regions. As
the whole process is well guided in a deterministic manner, every node in M is covered
at least once and at most (nr + 2) times. When taking into account the dead-ends, the
upper bound of the node’s covered times becomes (maxvi∈V nd(vi) + nr + 2), in that the
current node would just conduct a back-and-forth travel to every unvisited dead-end
neighbor. Thus, Theorem 4.1 holds.
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4.1.2. Storage and Communication Cost. Storage and communication cost for nodes in
WSNs are important factors for an efficient SFC construction algorithm. Here, the
storage cost is measured by the number of the nodes (landmarks or IDs) stored, and
the communication cost is measured by the number of messages exchanged. We show
the scalability of SURF by

THEOREM 4.2. Both the storage cost and the communication cost of every node in
SURF are at most O(nr), where nr is the number of r-landmarks in the network.

PROOF. Let us see the storage cost at first. First, every node in the network main-
tains its neighbors’ ID with O(1) storage. Second, every node in the cut iso-contours
maintains a routing table pointer to every cut node and every c-landmark in its iso-
contour, which incurs O(1) storage cost. Third, every r-landmark maintains a routing
table pointer to every other r-landmark, with the storage cost O(nr). Hence, the storage
cost of every node in SURF is at most O(nr).

Next, we turn to communication cost. First, to construct the iso-contours, every node
has to communicate to its neighbors to carry out the flooding initiated by the root node,
and thus the communication cost is O(1). Second, during the Reeb graph establish-
ment, every node in the process of g-landmark selection, iso-contour ID notification,
and region division generates O(1) communication cost, respectively. Third, every node
in the process of cut identification has O(1) communication cost. Finally, in the serial
traversal process, the communication cost is dominated by the traversal among differ-
ent regions, which incurs O(nr) communication cost. Overall, the communication cost
of every node in SURF is at most O(nr).

Often in comparison with the network size, the number of r-landmarks is considered
negligible. Here it is noted that we do not consider severe cases such as a narrow
line-like network with many tiny genuses.

4.1.3. Time Complexity. Another important scalability measurement metric for a SFC
construction algorithm is the time complexity. For SURF, we have

THEOREM 4.3. The time complexity of SURF is at most O(n), where n is the network
size.

PROOF. First, for the iso-contour construction, the time complexity results from
the flooding initiated by the root node, which is O(

√
n) for a regularly shaped (e.g.,

circlelike or squarelike) network whose diameter is O(
√

n) and, in the worst case, O(n)
for a network of arbitrary shape with its diameter O(n) [Nguyen et al. 2007; Tan et al.
2013; Yang et al. 2015; Liu et al. 2015]. Second, the process of the iso-contour ID
notification and the region formation for the Reeb graph establishment will incur a
time complexity of O(

√
n) and O(

√
n), respectively, since such a process performs only

local flooding. Third, the process of cut identification requires a time complexity of
O(

√
n) for the local flooding during the loop-end region notification and the bisection

operation. Finally, the time complexity in the serial traversal process is O(1) for local
decisions and would be O(n) in the worst case for communicating to r-landmarks in a
far-away region. To summarize, the time complexity of SURF is at most O(n), which is
linear to the network size.

4.1.4. Reacting to Local Failures. Sensor networks often experience local topology
changes resulting from temporary or permanent local node/link failures due to bat-
tery outage or environmental changes [Sarkar et al. 2013; Lin et al. 2015]. These kinds
of topology changes have a great impact on SURF, which yields SURF invalid, as the
network would be no longer closed and triangulated as prerequisites. To assure the ef-
fectiveness of SURF even in the presence of such local failures, we here present a simple

ACM Transactions on Sensor Networks, Vol. 12, No. 3, Article 22, Publication date: August 2016.



Connectivity-Based Space Filling Curve Construction Algorithms 22:13

Fig. 7. Illustrations of VIFR. Node failures are represented by black dots.

virtual identity-based local failure recovery scheme (VIFR) that can be incorporated
with SURF.

The basic idea of VIFR is simple. We first consider the case when only one node
(say vi) is dead. In this case, all its neighbors will set their identities as that of vi.
See Figure 7(a), for instance; suppose vi is broken down due to energy depletion. Then
each of vi ’s neighbors (vm, vn, v j , vk, vo, vp and vq) will find that the connection to vi
breaks of and set themselves with double identities: One represents itself and the
other represents vi. It is not hard to recognize that all vi ’s neighbors form a polygon.
By doing so, during the traversal when the current node is vk (the neighbor in the
same iso-contour with vi), and vk finds itself with double identities, it will in sequence
pass through vq, vp, vo, and v j (or vn, vm, and v j) and, finally, reach v j . When there are
two neighboring nodes dead (e.g., vi and v j in Figure 7(b)), we can also find that all
neighbors of vi and v j form a polygon, with their double identities. Then suppose the
current node is vk; it will sequentially pass by vq, vp, vo, vt, and vr (or vn, vm, vs, and vr)
and, finally, reach vr.

In a similar way, VIFR can work well for a small number of node failures in a local
area. Note that we do not consider situations when many node failures occur in a local
region, as there may be relatively large topological voids or holes. In such situations,
expanding ring [Johnson and Maltz 1996] or sensor redeployment [Tan et al. 2009; Li
et al. 2012] may be employed as complements, such that the traversal scheme can still
proceed.

4.1.5. Energy Consumption. Energy consumption is one of the most important issues in
WSNs. According to the First-Order Radio Model [Heinzelman et al. 2000], a widely
used energy model in WSNs, as in Reason and Rabaey [2004], Zhang and Shen [2009],
and Zhang and Li [2012], the energy consumption of a sensor node transmitting 1 bit
of data over distance d is Et(d) = Eelec + Eamp · dξ , where Eelec is the energy spent by
transmitter electronics, Eamp is the transmitting amplifier, and ξ is the path loss factor.
When receiving data, only the receiving circuit is activated; thus the energy spent by
receiving 1 bit of data is Eelec. In our study, as we have no location/distance information
but only connectivity information, to qualitatively estimate the energy consumption,
we assume small variances of the packet length, the path loss factor, as well as the
communication distance for the data transmission. Then, for both transmitting and
receiving a packet, a sensor node has a specific and bounded energy consumption. In
this sense, the energy consumption of each node in SURF is positively correlated to its
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communication cost (i.e., the number of packets exchanged), where the communication
cost of every node in SURF is at most O(nr), as proved in Theorem 4.2 (nr is the number
of r-landmarks in the network).

It is particularly noted that, among iso-contour construction, Reeb graph establish-
ment (including the iso-contour ID notication and the region formation), cut identica-
tion, and the serial traversal process, Reeb graph establishment consumes much more
energy than other three steps due to more rounds of messages exchanged as well as
more nodes involved (see Figure 16(a), for instance). Since Reeb graph establishment
dominates the energy consumption of SURF and is closely related to the topology of
a specific network, the energy consumption of SURF thus has a close correlation with
network topology, apart from network size and network density. Actually, there is,
in general, a positive correlation between the energy consumption of SURF and the
complexity of the network topology, as will be explained in Section 5.1.4.

4.1.6. Communication Errors. The proposed SURF algorithm presumes a perfect link be-
tween a pair of nodes, as in most connectivity-based algorithms [Funke and Milosavl-
jevic 2007; Lederer et al. 2009; Sarkar et al. 2013; Tan et al. 2013; Jiang et al. 2015]
in WSNs. Thus possible communication errors are not taken into account in SURF.
For the unreliable link where possible communication errors occur, however, SURF
can still be robust against packet loss by using some simple mechanisms to achieve
reliable data transmission, for example, the Automatic Repeat Query (ARQ) [Peterson
and Davie 2011], where a node will (re-)transmit a message to its neighbor until it
receives an acknowledgment from its neighbor before the timeout. As such, there is
limited impact on the performance of our algorithms, that is, the SFC can still be con-
structed and the generated path length will not be longer than that in the reliable link,
although unavoidable extra message cost (also more expense in energy consumption)
due to retransmissions has to be induced to compensate the communication errors.

4.2. SURF+ For Multiresolution SFC

The above-proposed SURF algorithm can provably cover the entire network by a single
path with moderate duplicate coverage. However, one may be concerned that the con-
structed SFC does not have an adaptive density, while causing a nearly fixed length
path. In some cases, it is undesirable to traverse an entire region before getting infor-
mation from another region. Moreover, in such applications in WSNs as serial fusion
and motion planning of mobile beacons, the length of a path may be restricted by the
travel budget or the required fusion delay [Ban et al. 2013; Mostefaoui et al. 2015],
where a multiresolution SFC is more preferable.

In this section, we present the SURF+ algorithm, which makes use of parameterized
spiral-like curves to cover the 3D surface and thus can generate a multiresolution SFC
adapting to different requirements on travel budget or fusion delay. By doing so, one
can quickly tour around the network coarsely, get a rough idea of the sensor data, and
gradually refine the density when more travel budget is available or a higher delay
is allowed. In the following, we first use a continuous domain for the intuition and
friendly explanation and then present algorithm implementation as well as simulation
results in discrete networks.

4.2.1. Principle in Continuous Settings. Consider a spiral whose parametric equations are
as follows:

x = r(φ) cos φ cos θ, (1)

y = r(φ) cos φ sin θ, (2)

z = r(φ) sin φ, (3)
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Fig. 8. Illustration of spherical spiral. Fig. 9. Spiral-like traversal inter-level.

where θ is the angular parameter describing the spiral, r(φ) is specified by the meridian
curve generating the surface, and the angle φ = θ/k. It can be easily recognized that
r(φ) = d/ cos φ is for a planar spiral lying on a plane at distance d, r(φ) = d/ sin φ for
a helix wrapping a cylinder of radius d, and r(φ) = d for a spherical spiral of radius d
(see Figure 8, for example).

Now we turn to examining the factor that impacts the surface coverage of the spiral.
Let us take the spherical spiral, for instance. It is not hard to find that the angle

φ (with respect to the sphere center) between two consecutive intersections with a
meridian must satisfy 
φ = 2π/k (since 
θ = 2π ). Thus the parameter k actually
determines the proportion of the surface coverage of the spiral. In particular,

PROPOSITION 4.4. The proportion of the surface coverage of the spiral is proportional
to the value of k. If k → ∞, then the spiral tends to cover the entire surface. If k → 0,
then the spiral becomes part of a great circle.

On this basis, we can design spirals to achieve multiresolution coverage of the surface
by adjusting the parameter k. However, it is nontrivial to realize this idea in discrete
networks, especially when location information is unavailable. In addition, unlike con-
tinuous settings where k ranges from zero to infinity, it is challenging to define such k in
discrete networks where nodes are randomly deployed in the field. Thus, the algorithm
implementation in discrete networks needs elaborate designs.

4.2.2. Algorithm in Discrete Networks. We next explain the detailed algorithm implemen-
tation. The basic idea of SURF+, similar to that of SURF, is to construct the local
spiral-like SFC with an adaptive density in each (uncut) region, before connecting all
local SFCs into a final SFC. While connecting the local SFCs is done in the same way
as SURF does, the challenges of SURF+ lies in the way how to construct the local
spiral-like SFCs.

For constructing local spiral-like SFCs, we purposely set a parameter κ as the anal-
ogy of the parameter k in continuous settings, such that multiresolution coverage of
the region can be achieved by choosing different κ values. Specifically, the constructed
local spiral-like SFC is designed to cover κ + 1 nodes in one iso-contour before entering
the next iso-contour to continue covering another κ + 1 nodes in a uniform direction.
To that end, SURF+ incorporates a spiral-like traversal scheme on the basis of contour
construction and the Reeb graph-based network decomposition (see the results in Fig-
ures 3(e) and (f)). The spiral-like traversal scheme starts from one of the r-landmarks
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ALGORITHM 2: T-NEXTHOP(p)
Intra-flag ← false; Inter-flag ← false;
if the counter equals to κ then

Inter-flag ← true;
else

forall the neighbors of level-i ngb of p do
if ngb is unvisited then

q ← ngb; Intra-flag ← true; counter++; break
end

end
end
if Intra-flag = false then

forall the neighbors of level-(i + 1) ngb of p do
if ngb is unvisited then

q ← ngb; counter ← 0; break
end

end
if Inter-flag ← true then

forall the faces fcs associated with p do
if two nodes vi in level-i and v j in level-(i + 1) are in fcs, and vi is unvisited then

q ← v j ; break
end
forall the faces fcs associated with p do

if two nodes vi and v j in level-(i + 1) are in fcs, and vi is a neighbor of p then
vi ← visited; break

end
end

end
return q

p0 (or the root node) in the region and consists of intra- and inter-contour traversals,
following T-NEXTHOP Algorithm as described in Algorithm 2.

Intra-Contour Traversal. At the beginning, p0 randomly chooses a neighbor, say, p1,
in its contour as its next hop, sets a counter 0, and traverses to p1. p1 then marks itself
as visited, updates the counter by adding 1, and finds an unvisited neighbor, say, p2,
in its contour as its next hop. This traversal process in the contour repeats until the
current node is pκ with the counter equals to κ or there is no unvisited neighbor in the
contour. In this situation, if the current node finds a neighbor exits in its next contour
with the same region ID, then the inter-contour traversal occurs.

Inter-Contour Traversal. Suppose the last node in the intra-contour traversal in
contour-i is vκ . Simply stated, the inter-contour traversal is for vκ to choose a neighbor
in contour-(i + 1). Often it is desirable that the constructed curve in contour-(i + 1)
maintains the same direction as that in contour-i (see the arrows in Figure 9), so the
curves in the two contours have less spatial correlation. Therefore, the primary task
here is to determine the uniformity of the directions. We are motivated by the following
observation: Denote vκ ’s unvisited neighbor in contour-i as vi, vκ ’s neighbor in contour-
(i + 1) sharing the same face with vκ and vi as v j , the node sharing the same face
with vκ and v j as vn, and the node sharing the same face with vi and v j as vm, and
then the direction v j to vm keeps up with the direction vκ−1 to vκ , see Figure 9. Thus
for inter-contour traversal, such a node as v j would be chosen as the next hop of vκ .
Please refer to Algorithm 2 for details, while the simulation results are demonstrated
in Section 5.2.
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Fig. 10. Double rulings design methodologies. (a) From Sarkar et al. [2006, 2009]; (b) from Luo et al. [2011];
(c) our design. p is the data producer; q is the data consumer; red (respectively blue) line represents the data
storage (respectively, retrieval) curve.

4.3. Application for In-Network Data Storage and Retrieval

Except for the serial operation on both sensor nodes and sensor data, and the motion
planning of mobile beacons as mentioned in Section 1, we now consider another two
applications our SURF and SURF+ algorithms can be use for: distributed in-network
data storage and retrieval for high genus 3D surface WSNs.

4.3.1. Basics on In-Network Data Storage and Retrieval. In-network data storage and re-
trieval has always been one of the most important topics in WSNs [Sarkar 2014].
While centralized data storage and retrieval schemes suffer from “energy hole prob-
lem” at nodes near the sink [Pottie and Kaiser 2000], distributed schemes are more
desirable for the scalability and robustness.

Initial attempts for distributed in-network data storage and retrieval map data
to rendezvous nodes for storage and retrieve data by geographic routing such as
GPSR [Karp and Kung 2000]. A celebrated pioneer work is geographical hash ta-
ble (GHT) [Ratnasamy et al. 2002, 2003], which hashes the data by its data type into
geographical locations and stores the data at nodes around the so-called home node,
the one closest to the hashed location. Its data retrieval is then implemented by the
geographic routing, namely GPSR [Karp and Kung 2000]. The main drawback of GHT
is that the rendezvous node for popular data queried by many consumers imposes a
communication bottleneck. In addition, the data retrieval scheme in GHT is not dis-
tance sensitive: Even when the data consumer is close to the data producer, it may still
have to go to a far-away rendezvous node.

To tackle the above issues, double rulings schemes are proposed [Sarkar et al. 2006,
2009]. The key idea is the design of two intersection guaranteed curves, namely the
data replication curve and the data retrieval curve. Data are stored at nodes following
the replication curve while a data request travels along the retrieval curve, so data
retrieval can be guaranteed successful due to the intersection property. Figures 10(a)
and (b) illustrate two typical double rulings designs in a 2D grid network and a 3D
cube network. Take the grid network case, for example; the replication curves follow
the horizontal lines and the retrieval curves follow the vertical lines. Invariably, the
data consumer can find the desired data generated by a data producer by traveling
along the vertical line.

Much research has been done recently to extend double-ruling schemes to the net-
works with irregular geometric shapes, for example, by GeoQuorum [Luo and He 2011],
3DQS [Luo et al. 2011], RDRIB [Lin et al. 2012], Harmonic Quorum Systems [Zhang
et al. 2012], and MobiMark [Tang et al. 2014]. However, almost all these methods
require the network shape be topologically equivalent to a regular shape such as a
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grid or a cube. Thus, they cannot be applied to a high genus 3D surface network that
apparently is topologically inequivalent to a regular shape.

As far as we know, the only double-ruling-based method that can be used for high
genus 3D surface WSNs is discussed in Yang et al. [2013, 2015]. It first computes a cut
graph [Munkres 2000] of the surface network, along which the surface can be cut open
to a topological disk. It then embeds the planar disk to an aligned planar rectangle
with discrete surface Ricci flow [Jin et al. 2008], such that regular double rulings
scheme can be applied. However, computing the cut graph and the planar rectangle
virtual coordinates is rather complicated. Moreover, the obtained cut graph cannot be
guaranteed optimal, which possibly in turn increases the computing cost when using
discrete surface Ricci flow.

4.3.2. Our Approach. We have known that the most tricky part of a double rulings
design is the guaranteed intersection between the replication curve and the retrieval
curve. Recall that the generated SFC by SURF+ is ensured to cover every iso-contour,
and then an intuitive solution for a double rulings scheme in high genus 3D surface
WSNs can be developed in a straightforward manner, that is, to devise the replication
curve following the iso-contour and the retrieval curve following the SFC generated by
SURF+ (here we use the simplest case with κ = 04). To be more concrete, consider a
data producer with its iso-contour ID Ci. To store the produced data, the data producer
travels and leaves copies of the data at nodes whose iso-contour ID is Ci. As discussed
in Section 3.3, the traversal of the data producer is in a serial manner, following the
exact iso-contour Ci (see the red curve in Figure 10(c)). For data retrieval, the data
consumer traverses to find the desired data as described in Section 4.2.2. The data
consumer stops once it hits the node in possession of its desired data (see the blue
curve in Figure 10(c)). The effectiveness is validated by simulations in Section 5.3.

5. PERFORMANCE EVALUATION

5.1. Performance Evaluation of SURF

5.1.1. SURF for Various Network Topologies. To evaluate the effectiveness of SURF, we
have conducted extensive simulations on various scenarios. We first examine the per-
formance of SURF in four 3D surface networks: a genus-1 corridor, a genus-2 bowknot,
a genus-3 smile, and a genus-4 window, with the average node degree between 8 and
11. Figure 11 shows the results of SURF, as well as the statistical distribution of nodes’
covered times. It is observed that SURF delivers a stable performance and successfully
generates in each network an SFC that traverses the whole network with each node
covered a small number of times. This is consistent with Theorem 4.1.

5.1.2. Comparisons with Other Approaches. We also evaluate another two simple SFC
construction approaches for comparison, namely random walk [Spitzer 2001] and pre-
oder traversal [Liang et al. 2013] (a tree-based scheme similar to a depth-first search).
Note that there are very limited algorithms to compare with because previous SFC
construction schemes are proposed for 2D WSNs and cannot be directly applied in
high genus 3D surfaces. Hence, we additionally propose random-SURF, a variant of
SURF, as an alternative comparison object. Random-SURF makes traversal first in
different iso-contours of one region, and then in different regions, as is done in SURF.

4Note that the constructed SFC generated by SURF+, as discussed in Section 4.2.2, is designed to cover κ +1
nodes in one iso-contour before entering the next iso-contour to continue covering another κ + 1 nodes. So to
guarantee the intersection between the data replication curve (i.e., the iso-contour) and the data retrieval
curve (i.e., the SFC generated by SURF+), one covered node is enough in each iso-contour. Therefore, we
choose κ = 0.
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Fig. 11. Columns from left to right: (a) A genus-1 corridor network with 710 nodes; Avg deg is 8.92. (b) A
genus-2 bowknot network with 837 nodes; Avg deg is 9.35. (c) A genus-3 smile network with 1,102 nodes;
Avg deg is 10.01. (d) A genus-4 window network with 5,366 nodes; Avg deg is 9.63. Rows: (1) The original
triangulated network. (2) The emerged regions of the Reeb graph and the maximum cut set. (3) The SFC
generated by SURF. (4) The distribution of nodes’ covered times.

The difference is that random-SURF chooses its next hop (within and inter regions) at
random.

Figure 12 illustrates the network coverage percentage of random walk, random-
SURF, preoder traversal, and SURF in each 3D network at the first time the network is
fully covered by SURF. We can see that SURF yields a much faster traversal speed than
random walk and random-SURF, and the superiority of SURF is even more prominent
as the network becomes complex, say, in the network of genus-4 window. The better per-
formance of SURF benefits from its region division as well as c-landmark/r-landmark
piloting, while random walk and random-SURF are unrefined schemes without explicit
directions on how to speedily traverse the whole network.

Figure 13 further depicts how the specific network coverage changes as the generated
path moves forward by the four algorithms in different networks. It can be seen that
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Fig. 12. Comparison on the network coverage.

Fig. 13. The coverage vs. the path length.

SURF always leads to 100% network coverage however complex the network is, and also
with the fastest pace, while random walk cannot achieve full coverage in a competing
pace. This is not surprising as SURF is a well-guided algorithm while random walk is
somewhat blind and luck dependent.

It is also found that, in comparison with random walk, random-SURF performs
better in simpler topologies, say, the networks of genus-2 bowknot and genus-3 smile.
The reason is that, in contrast to random walk’s complete blindness, random-SURF
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Fig. 14. Comparisons between preorder traversal and SURF for torus networks with different node degrees.

Fig. 15. Performance of SURF under different network densities.

traverses the network in a more global way: Before aimlessly choosing its next hop,
it has to find an unvisited neighbor in its iso-contour or in its region, which, to some
extent, alleviates its blindness.

In more complex scenarios, for example, in the genus-4 window, however, random-
SURF is still far less effective than SURF with respect to the coverage rate and the
coverage speed. After all, random-SURF is a randomized algorithm. Without the guid-
ance of c-landmarks in cut iso-contours or g-landmarks inter-regions, random-SURF
inevitable runs into locally infinite loop at a certain time. That is the reason why, in
Figure 13(d), the coverage percentage of random-SURF nearly keeps steady when the
path length is greater than roughly 3,000.

As a matter of fact, in our tests in the genus-4 window, both random walk and
random-SURF require a path length of more than 50,000 to reach 50% coverage. This
is because after a certain fraction of nodes have been visited, random walk and random-
SURF are more inclined to aimlessly find the last few unvisited nodes for a long time,
as discussed in Section 1.1.3.

It is noted that preoder traversal has a comparable covering speed with SURF, and,
in fact, it always has 100% network coverage as shown in Figure 13. However, as a
tree-based approach, the nodes near the root node (or the father nodes) are shared by
different branches and thus are more likely to be subjected to more duplicated visits
during the traversal process [Kuhn et al. 2003; Gao and Zhang 2006; Zhang and Shen
2009; Lam and Chen 2013], especially when the nodes near the root node (or the father
nodes) have relatively large node degrees. Figure 14 shows the comparison results on
Torus networks shown in Figure 15(a), Figure 15(b), and Figure 3(a), with its average
node degrees of 7.2, 12.5, and 17.7, respectively. We can see that preorder traversal has
a roughly 24%, 32%, and 39% longer path length than that of SURF, from left to right,
which means that SURF is more robust to networks with different node degrees.
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5.1.3. Performance Under Different Network Densities. Most connectivity-based algorithms
in WSNs [Funke and Milosavljevic 2007; Lederer et al. 2009; Tan et al. 2013; Jiang
et al. 2015] require a relatively high network density, so the shape of the network can
be well represented. In contrast, SURF works well for both dense and sparse networks
as long as the network is connected (as well as closed and triangulated).

To verify the impact of node density on the performance of SURF, we conduct further
simulations. In particular, we fix the communication range and vary the number of the
genus-2 torus network in Figure 3(a) to generate two sparser networks with different
average node degrees, as shown in Figure 15. It can observed that SURF is insensitive
to different network densities and can achieve stable full network coverage even for a
sparse network with average node degree of 7.2 (see Figure 15(a)). In addition, coupled
with the result in Figure 3(h), we can see that higher network density leads to an SFC
that captures the topological features of the underlying network better, as the distance
of two sensor nodes is more accurately approximated by the hop count distance in
discrete networks when the network is denser.

5.1.4. Energy Consumption of SURF. We conduct further simulations to illustrate how
energy consumption of SURF changes. According to Shnayder et al. [2004] and Jiang
et al. [2011], we set one node’s energy consumption for transmission (respectively,
receiving) to 80 (respectively, 30) mJ per message, which is based on widely used
hardware configurations of MICA2 [Crossbow 2003]. It is noted that here we set the
energy consumption to be identical to reflect its changes in trend; the exact value may
vary in light of different parameters, for example, transmission distance and the path
loss factor, in practice.

Figure 16(a) shows the energy consumption comparisons of different SURF func-
tionalities in the four networks in Figures 11(a)–(d). As mentioned, Reeb graph es-
tablishment consumes the most energy. Moreover, it can be also observed that energy
consumption of SURF increases as the network size gets larger. Figure 16(b) describes
the energy consumption comparisons of networks with similar sizes and node degrees,
where the network sizes/node degrees of corridor, bowknot, smile and window are
902/9.4, 927/9.4, 928/9.5, and 941/9.7, respectively. We can find that even with similar
network sizes and node degrees, networks with different topologies have different en-
ergy consumptions, which mainly result from the major energy consumer—Reeb graph
establishment. Next, we choose a fixed network topology, the torus, and vary its size
as well as node degree. The result is presented in Figure 16(c), which, as expected,
exhibits a positive correlation of energy consumption and network size/node degree.

For an unreliable link, the number of packet transmissions necessary to ensure the
successful transfer of a single packet follows a geometric distribution of parameter p,
according to Banerjee and Misra [2002], and its statistical mean value is 1/(p − 1),
where p is the packet error rate. Figure 16(d) demonstrates the energy consumption of
the torus network in Figure 3(a) with increasing packet loss rate, and the result is in
agreement with the theoretical analysis.

5.2. Performance Evaluation of SURF+

In this section, we report the simulation results of SURF+ on the four 3D surface
networks in Figures 11(a)–(d). We mainly focus on how the coverage percentage changes
with the parameter κ. As there is no comparison counterpart, we only evaluate the
performance of SURF+, with the results exhibited in Figure 17. We can observe that
the coverage percentage is monotonically increasing with the value of parameter κ, in
all cases, and leads to a 100% network coverage as κ becomes a relatively large number,
which is well in accordance with Proposition 4.4. The results thus validate that SURF+
has an adaptive density, with a tunable path length.
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Fig. 16. Comparisons of energy consumption of SURF in different situations.

It can be also noted that the coverage changing rate decreases gradually as the value
of κ increases. This is because different contours contains different number of nodes.
At first, when κ is small, there are lots of nodes unvisited in most of the contours. Thus,
when κ is increased by one, the number of increased covered nodes roughly equals to
the total number of contours in the network. However, as κ becomes larger, all nodes
in some contours are visited. In this case, when κ is increased by one, the number
of increased covered nodes would be less than the total number of contours in the
network. This kind of disparity becomes notable when κ gets even larger, until the
whole network is covered.

5.3. Performance Evaluation of SFC-Based In-Network Data Storage and Retrieval

To evaluate the performance of our approach, we conduct simulations on the genus-
2 torus network in Figure 3(a) with our approach, the cut-graph-based scheme [Yang
et al. 2013, 2015], and GHT [Ratnasamy et al. 2002, 2003]. We first report the results on
the costs of data storage and retrieval, as shown in Figure 18. For double-ruling-based
schemes, there is usually a balance between the data storage and retrieval costs: the
more data replication, the fewer data retrieval costs and vice versa. From the results,
we can see that our approach has a comparable performance with the cut-graph-based
scheme, with fewer data storage costs but a little more data retrieval costs.

To test the distance sensitivity of data retrieval, we randomly select 200 pairs of
data producer and consumer and show the average results in Figure 19. It is observed
that, while the consumer cost is nearly the same in accessing local data as that for
accessing remote data, the two double-ruling-based schemes have much better distance
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Fig. 17. The coverage v.s. κ.

Fig. 18. Comparisons of storage/
retrieval cost.

Fig. 19. Consumer cost vs. dis-
tance between data producer and
data consumer.

Fig. 20. Comparisons of load
distribution.

sensitivity of data retrieval. In addition, the consumer cost of double rulings schemes
is invariably smaller than that of GHT. It is not surprising that our approach has
a comparable performance with the cut-graph-based scheme, as the cut-graph-based
scheme is in essence the same way as our approach but using an embedded into a
rectangle that eventually is mapped back to the original network.

At last, Figure 20 shows the traffic load distributions of the three schemes in a 500-
data consumers test. For GHT, the majority of the consumers have to pass the nodes
near the producer, and thus a small fraction of nodes have much higher loads than the
rest. For other two schemes, there is no such hot spot as GHT, and therefore the load
is much more balanced. Our approach is even more balanced than the cut-graph-based
scheme, because the Ricci flow method often embeds a relatively uniform network into
a space with nonuniform node distribution. Therefore, nodes in the denser region are
more likely to suffer an overload than those in the sparser area.
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6. CONCLUSION AND FUTURE WORK

In this article, we have presented a novel distributed algorithm for SFC construction
in high genus 3D surface WSNs. This algorithm requests the connectivity informa-
tion only and does not require advance knowledge of location or distance information.
It is also scalable, with a nearly constant storage and communication cost per node
in the network. To incorporate adaptive density of the constructed SFC, we also de-
signed teh SURF+ algorithm and present its application for in-network data storage
and retrieval in high genus 3D surface WSNs. Simulations on several representative
networks demonstrate that both algorithms work well on high genus 3D surface WSNs.

We are interested in several directions in the future. First, we plan to evaluate
other triangulation techniques for our algorithm. As some special cases of iso-contours
(e.g., when there are dead-ends) are closely related to the triangulation methods, we
believe improvement is possible when appropriate approaches are adopted to lower
the chances that the special cases occur. Second, we find that SURF does not work
well with some severe cases (e.g., a surface with multiple genus close to each other),
where it could be difficult to identify the accurate Reeb graph. Therefore, a way to
deal with this kind of special settings needs further in-depth exploration. Last, we only
consider in this article the orientable closed surface (compact and without boundaries).
It would be more challenging to design linearization schemes for more general 3D
surface networks, say, those with holes.

APPENDIX

A. PROOF OF THEOREM 3.6

A.1. Lemma A.1

The proof of Theorem 3.6 is based on the following Lemma.

LEMMA A.1. Dead-ends of an iso-contour in f −1(l) have no effect on the l-connectivity
of the non-dead-end nodes within the same iso-contour.

PROOF. According to the size of the l-degree (defined as the number of its neighbors in
its iso-contour), a dead-end can be classed as one of the following two categories: with
l-degree 1, and with l-degree more than 1. Figure 21 shows the two cases of dead-ends.

For dead-ends with l-degree 1, when they are removed, the l-connectivity of the non-
dead-end nodes in the iso-contour is guaranteed by Lemma 3.3. For dead-ends with
l-degree more than 1, we first claim that the neighbor nodes of a dead-end in the iso-
contour is directly connected (otherwise it contradicts our assumption of a triangulated
surface). So, in Figure 21(b), nodes vi and v j are directly connected. Then it can be seen
that this kind of dead-end cannot negate the l-connectivity of the non-dead-end nodes
in the iso-contour. That is, Lemma A.1 holds.

A.2. Proof of Theorem 3.6

PROOF. On the one hand, Lemma 3.3 guarantees that any two nodes in the same
iso-contour are l-connected, and from Lemma A.1 we can see that dead-ends have no
effects on the l-connectivity of the iso-contour. So an iso-contour with dead-end edges
eliminated is l-connected and is also connected.

On the other hand, we prove that an iso-contour with the dead-end edges eliminated
is a closed cycle. That can be done by mathematical induction. We start from the root
node r = f −1(0). Recall that the network is a closed surface, so f −1(1) contains one
or more closed curves, that is, any one of the iso-contours of f −1(1) is a closed cycle.
Note that there is no dead-end edge in the iso-contour(s) of f −1(1). Assume any one of
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Fig. 21. Two cases of dead-ends.

the iso-contours of f −1(l) with the dead-end edges eliminated is a closed cycle. We next
prove that any one of the iso-contours of f −1(l + 1) with the dead-end edges eliminated
is as well a closed cycle. Three cases need to be considered: the iso-contour of f −1(l + 1)
(1) without dead-ends, (2) with dead-ends of l-degree 1, and (3) with dead-ends of l-
degree more than 1. In all the cases, each node in f −1(l) must correspond to at least
one neighbor in f −1(l + 1). As nodes in the iso-contour of f −1(l + 1) are l-connected,
suppose that the iso-contour is not a cycle; then there must be two successive nodes
(in the direction of clockwise or counter-clockwise) disconnected as two endpoints, each
of which connects to its parent node in f −1(l). Then a polygon containing the two
endpoints, their parents and their children f −1(l + 2), or a void (or a hole) if f −1(l + 1)
is the last level set, appears. This contradicts our assumption either that the surface
network is closed or is triangulated. Thus, in all the cases, the iso-contour of f −1(l + 1)
must be a cycle. So far in all cases, any one of the iso-contours of f −1(l + 1) with
the dead-end edges eliminated is provably a closed cycle, and, therefore,Theorem 3.6
holds.
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