
SURF: A Connectivity-based Space Filling Curve
Construction Algorithm in High Genus 3D Surface WSNs

Chen Wang Hongbo Jiang
School of Electronic Information and Communications,

Huazhong University of Science and Technology, China, 430074
{cwangwhu, hongbojiang2004}@gmail.com

Abstract—Many applications in wireless sensor networks
(WSNs) require that sensor observations in a given monitoring
area be aggregated in a serial fashion. This demands a routing
path to be constructed traversing all sensors in that area, which
is also called to linearize the network. In this paper, we present
SURF, a Space filling cURve construction scheme for high genus
3D surFace WSNs, yielding a traversal path provably aperiodic
(that is, any node is covered at most a constant number of times).
SURF first utilizes the hop-count distance function to construct
the iso-contour in discrete settings, then it uses the concept of
the Reeb graph and the maximum cut set to divide the network
into different regions. Finally it conducts a novel serial traversal
scheme, enabling the traversal within and between regions. To
the best of our knowledge, SURF is the first high genus 3D
surface WSNs targeted and pure connectivity-based solution
for linearizing the networks. It is fully distributed and highly
scalable, requiring a nearly constant storage and communication
cost per node in the network. Extensive simulations on several
representative networks demonstrate that SURF works well on
high genus 3D surface WSNs.

I. INTRODUCTION

In this paper we focus on constructing a space filling
curve (SFC) to linearize a high genus three-dimensional (3D)
surface WSN, i.e., “traversing” the high genus 3D surface
network by a single path. In the following, we look back upon
related works of the SFC and its applications and constructions
in WSNs, offering a full-spectrum understanding toward its
advancement in WSNs, followed by our contributions.

A. Existing Work

1) The concept of the SFC: The concept of the SFC came
out in the late 19th century, and is accredited to Peano, who
proved the existence of a curve that passes through every
point of a closed unit square [15]. Thereafter, various SFCs
have been proposed for 2D and 3D settings [17]. Most of
these curves are recursively constructed, e.g. the Hillbert curve
in Fig. 1(a) with respect to three iterations, while some are
non-recursive, e.g. the Cantor curve in Fig. 1(b). However, in
continuous settings almost all existing SFCs are constructed
in a square or cube region, and little work has been done

This work was supported in part by the National Natural Science Foun-
dation of China under Grants 61271226, 61272410, and 61202460; by
the National Natural Science Foundation of Hubei Province under Grant
2014CFA040; by the Fundamental Research Funds for the Central Universities
under Grants 2014QN158, 2014QN164, 2014XJGH003; by the Fok Ying
Tung Education Foundation under Grant 132036; by the Hong Kong Scholars
Program under Grant XJ2012019; and by the China Postdoctoral Science
Foundation under Grants 2013M540580, 2014M560608. The corresponding
author of this paper is Hongbo Jiang.

(a) The Hillbert curve. (b) The Cantor curve.

Fig. 1. Two typical SFCs in 2D domain.

to extend the SFC construction to other shapes, letting alone
solutions in discrete settings.

2) Applications of the SFC in WSNs: In discrete WSNs,
enforcing a linear order of the sensor nodes via the SFC has
broad applications, one of which is the serial operation on both
sensor nodes and sensor data. In [14], a serial fusion technique
was proposed for collaborative signal detection by the traversal
along a SFC, which ensures visiting the nodes in a linear
order. This technique enables the detection process to stop as
soon as sufficient evidences have been collected. In [20] the
authors presented a dual addressing space representation ar-
chitecture for self-organizing networks, and in [5], the authors
proposed an algorithm for processing similarity search queries
in WSNs. They both applied the Hilbert curve to linearize
the network, establishing a bijective mapping between the
SFC and the node’s index/logical address, so that standard
1D indexing/addressing mechanisms can be applied.

Another application of the SFC is the motion planning of
mobile beacons. [2] and [11] considered the localization of
WSNs, where a single mobile beacon aware of its position
was utilized to help other nodes to localize themselves by
moving to cover the entire network. The paths that the mobile
beacon should travel along are designed to follow the SFCs.
Similar ideas can also be helpful for the battery recharge of
the sensors [22] or the data collection by the data mules near
the sink [13], [19].

3) The SFC construction in WSNs: The previous works
mainly focus on applying the SFC for various purposes in
WSNs. How to construct the SFCs, however, is not their
concentration. The only research concentrates on constructing
the SFCs in WSNs is presented in [3]. The proposed method
can generate a SFC that densely covers any planar geometric
domain, with a coverage density proportional to the length of
the curve, but it cannot be directly utilized in 3D scenarios.

2015 IEEE Conference on Computer Communications (INFOCOM)

978-1-4799-8381-0/15/$31.00 ©2015 IEEE 981

2

A practically potential solution for visiting nodes in a 3D
network could be based on the random walk. The problem,
however, is that when choosing its next hop, the random walk
is essentially “blind”. Intuitively, a random walk visits a new
node with high probability at the initial stage. But after a
certain proportion of nodes have been visited, the random walk
is more likely to take a (infinite) long period to aimlessly
walk in the network, anchoring its hope on encountering
the last few unvisited nodes earlier. Therefore, the random
walk cannot ensure deterministic node covering results with
restricted traversal path length.

4) High Genus 3D Surface WSNs: Although 2D planar
and simple 3D volume settings are assumed in most earlier
WSN studies, there have been increasing interests in scenarios
where sensors are typically deployed in complex-connected
3D surfaces. Examples of such applications include the fire
prevention in the corridors of buildings [8], the monitoring
of coal mine tunnels for disaster warning [12], as well as
the monitoring in underground tunnels used in gas, water or
sewer systems [1]. This kind of WSNs is often of a complex-
connected 3D setting with non-trivial topology, being modeled
as high genus1 3D surface WSNs. It comes to our attentiones
that only a few of routing studies [23], [24] are conducted on
these emerging networks.

It is noted that, the task of SFC construction is significantly
different from packet routing path designs in high genus 3D
surface WSNs that have been addressed in [23], [24]. Rather
than connecting two given nodes by a routing path, the goal
of SFC construction is a path traversing all sensor nodes
(a coverage-critical selection). This task is more challenging,
considering the less-studied high genus 3D surface WSNs.

B. Challenges and Our Contributions

In this paper, we present SURF, a novel Space filling
cURve construcion scheme for high genus 3D surFace WSNs,
yielding a path provably aperiodic (any node in the path is
covered/visited at most a constant number of times). The name
of our proposed scheme, SURF, can be interpreted as the
surface filling or surfing on 3D surfaces.

The intuition of SURF stems from the observation in the
continuous domain — the iso-contours of a closed spherical
(genus-0) surface in the smooth setting naturally form an
embryonic form of the SFC (Fig. 2(a)), and directly connecting
them forms a SFC shown in Fig. 2(b). When it comes to high
genus surfaces, the primary challenge lies in the way how to
deal with the genuses, which may incur two or more contours
of an iso-value. Fig. 4(a) shows a case with only one contour
of the iso-value 1, but two contours of the iso-value 10.

The main idea behind SURF is to divide the surface into a
set of genus-0 regions by cutting off the genuses, followed by
constructing the SFC in each region separately before connect-
ing all SFCs in a practical way. The particular problem we are
facing in discrete networks, however, is more challenging: (1)

1The genus is a topological term that can be simply regarded as the number
of handles on the sphere, see Section II-A. Without leading to confusion, we
interchangeably use the terms “genus” and “handle”.

(a) (b)

Fig. 2. (a) Iso-contours of a shpere. (b) A SFC of a sphere in 3D domain
where iso-contours are connected one by one.

How to define the iso-contour in a discrete 3D surface network
with mere connectivity information, such that the iso-contour
is a connected closed curve? (2) How to identify genuses and
further cut them off to form different regions? (3) How to
ensure the length of the generated SFC is bounded?

To address the first challenge, we propose to use the
hop-count distance function to construct the iso-contour in
discrete settings (detailed in Section III-A). For the second
one, the concept of the Reeb graph and the maximum cut set
are utilized to realize the network segmentation (detailed in
Section III-B). After these procedures, the network is divided
into different regions. We design schemes to guarantee the
traversal within and between regions, yielding a SFC provably
aperiodic (see Theorem 5 in Section III-C). The whole process,
as an example, is shown in Fig. 3.

To the best of our knowledge, SURF is the first high
genus 3D surface WSNs targeted and pure connectivity-based
solution for the SFC construction in WSNs. SURF offers
several salient features. First, it requires connectivity infor-
mation only, without the reliance on the location or distance
measurement. Second, it does not rely on any particular
communication model, only assuming a constant maximum
transmission range, which is a common case in practical
WSNs. Third, it is fully distributed and scalable, with a nearly
constant storage and communication cost of every node.

The rest of this paper is organized as follows. In Section II,
we introduce some preliminary knowledge of our proposed
SURF algorithm. In Section III, we describe SURF in detail
and analyse its storage and communication cost. Section IV
presents the performance evaluation, and finally, Section V
concludes the paper.

II. PRELIMINARY

Before digging into the problem of SFC construction, we
briefly introduce several notions and definitions in algebraic
topology and computing geometry. For further theoretical
background, we refer interested readers to [10].

A. Cut and Genus

In algebraic topology, a cut C is referred to as a disjoint
closed simple curve on a connected and orientable surfaceM,
whereM is orientable, indicating it has two distinct sides. One
notable property of a cut is its ability to locally disconnect the
topology of M. Suppose a set C = {C1, C2, ..., Cn} is a cut
set onM, whose cardinality is n, then C is a maximum cut set

2015 IEEE Conference on Computer Communications (INFOCOM)

982

3

(a)

A B C D E F
Loop 1 Loop 2

(b)

A B C D E F
Loop 1 Loop 2

(c) (d)

(e) (f) (g) (h)

Fig. 3. The pipeline of SURF. (a) The triangulated genus-2 torus network. (b) The Reeb graph of the network. (c) The Reeb graph after the bisection
operation. (d) The traversal sequence of SURF in different regions. (e) The iso-distance contour lines of the network. (f) The regions of the Reeb graph in
(b). (g) The regions of the Reeb graph in (c); the cut pairs are represented by red and green dots. (h) The SFC generated by SURF, with link edges colored
in pink. Different arcs and regions of the Reeb graph are distinguished by colors.

Cmax ofM if and only if: (1) Any two cuts in Cmax belong to
different homotopy classes, i.e., one cut cannot be smoothly
deformed to another without leaving the surface; (2)M\(C1∪
C2 ∪ ... ∪ Cn) is connected; (3) M\ (C1 ∪ C2 ∪ ... ∪ Cn+1)
is disconnected. Accordingly, the genus of M is defined as
the cardinality of the Cmax of M, indicating the maximum
number of cuts without rendering M disconnected [7].

The notion of the genus is closely associated with the clas-
sification of orientable closed surfaces up to homeomorphism:
for a given integer n ≥ 0, there is exactly one topological type,
“the surface of genus-n”, which can be obtained by attaching n
handles onto a simple closed 3D surface. For example, a sphere
is a genus-0 surface, and any cut will render it disconnected;
a torus is a genus-1 surface, as shown in Fig. 4, with at most
one cut on it while not leading to its disconnection.

Motivated by [23] where the surface M is decomposed to
a simple genus-0 topology using cuts, our idea is to exploit a
similar method to generate a sliced surface with which SURF
is able to extract the iso-distance contour and the Reeb graph,
and we hereby put forward a novel serial traversal scheme for
the SFC construction.

B. Iso-distance Contour

For a scalar, real-valued function f : M → R, the level
set of an iso-value h is the set of points f−1(h) = {p ∈
M | f(p) = h} [4]. A contour is a connected component of
a level set, i.e. a curve along which f has a constant value.
Fig. 4(a) illustrates a set of successive iso-distance contours
on a torus with a mapping to an integer set {0, 1, ...,H} of
different height values.

In a discrete network with mere connectivity information,
however, it is not straightforward to define the level set where
no height value or geodesic distance2 can be derived. What’s
more, even if we can find a metric to represent the level set,
it is still unclear whether there is a connected component to
form the contour.

2The geodesic distance on a 3D surface can be regarded as the (locally)
shortest path between two nodes on the surface.

To tackle this problem, SURF makes use of the hop-count
distance, an analogy of the Euclidean/geodesic distance in
continuous domains, to define the real-valued function f .
Meanwhile, SURF is designed to ensure the existence of the
contours (detailed in Section III-A). Note that one challenge
here is, when a level set is separated to two or more contours
due to the existence of the genuses (e.g. f−1(10) in Fig. 4(a)),
SURF is supposed to have the ability to find out where the
genuses are. For this purpose, the Reeb graph is used to extract
a maximum cut set that cuts off the genuses of M.

C. Reeb Graph and Cut Identification

Reeb graph is a topological structure proposed in [16].
Briefly speaking, a Reeb graph R of a real-valued function
f explicitly reveals the evolution of its level set f−1(·).
When the number of the contours of f−1(·) increases or
decreases, the gradient of f will vanish at the separating
points of the contours. Those points are called critical points
(theoretically, there are three types of critical points, namely,
minima, saddles, and maxima [16].) of f , e.g., Saddle A and
Saddle B in Fig. 4(b) which shows an example of the Reeb
graph.

Given a Reeb graph, we turn to extracting a maximum cut
set Cmax fromM. Our approach is motivated by the following
theorem.

Theorem 1: The Reeb graph of a closed orientable genus-n
2-manifold has exactly n loops [6].

H

H-1

...

2
1
0

10

...

(a) (b)

Fig. 4. Iso-distance function and its Reeb graph on a torus.

2015 IEEE Conference on Computer Communications (INFOCOM)

983

4

Theorem 1 implies that we can first identify all loops of the
Reeb graph, thereby finding a cut for each loop. Specifically,
a loop in a Reeb graph is associated with two degree-3 nodes:
one starts the loop and the other ends it, see the two saddles
in Fig. 4(b). Thus, we have

Definition 1: An arc of the Reeb graph of M is a loop-end
arc, if it is merged from two different arcs.
See Fig. 3(b) for an example where the blue and yellow arcs
are merged into a loop-end one colored in pink.

Corollary 2: Each loop in the Reeb graph ofM corresponds
to one loop-end arc.

As such, in order to identify a cut for one loop, our method
is to find the bisection in loop-end arc which disconnects
this loop. Fig. 3(c) shows the Reeb graph after the bisection
operation. We will present the implementation in a discrete
network in Section III-B.

III. SURF ALGORITHM

Given a high genus 3D surface WSN, SURF is derived from
its triangular form. However, the triangulation procedure itself
is out of the scope of this work. Numerous recent studies,
e.g. [9], [18], [25], have proposed simple and distributed
algorithms to obtain the triangular structure, and can be used in
conjunction with our approach. The triangular structure offers
a shape representation of the high genus 3D surface, as shown
in Fig. 3(a). Without leading to confusion, hereafter we still
refer to this triangular structure as the high genus 3D surface,
denoted by M, with its vertex (node) set V = {vi} and edge
set E = {eij = (vi, vj) | vj is called the neighbor of vi}.
Given a triangular structure, SURF follows three steps for the
SFC construction:

(1) Contour Construction: to lay the groundwork for re-
gional division (see Fig. 3(e)).

(2) Maximum Cut Set Identification: to cut off the genuses
and thus divide the network to different regions (see Fig-
ures. 3(g)).

(3) Serial Traversal Scheme: to finally construct the SFC by
the traversal intra and inter-regions (see Fig. 3(h)).

A. Contour Construction

The first step of SURF is to construct the level set and its
corresponding contour lines3 of M, so that, in each contour
line, it is trivial to locally construct a SFC. To that end, we first
establish a hop count distance function f : M → L, where
L is the integer set representing the hop count. Specifically,
a randomly selected root node r initiates a flooding across
the whole network. After receiving a flooded message from
r, every node knows its hop count distance l to r, and then
records its level index with l. Therefore, for any node vi with
the level index l, we have f(vi) = l. Accordingly, the level set
of hop count distance l is given by f−1(l) = {eij = (vi, vj) ∈
E | f(vi) = f(vj) = l}.

Recall that a contour in continuous settings is a connected
component of a level set. In the following, we show that in

3We use the “contour line” in discrete network settings to distinguish it
from the “contour” in continuous scenarios.

discrete networks, a connected contour line of a level set also
exits, which is defined based on the following notion.

Definition 2: The l-neighbor for any edge eij in f−1(l) is
defined as N(eij , l) = {(eij , eik) | eij and eik have a common
vertex vi ∈ V, and eij , eik ∈ f−1(l)}.

Then we introduce the concept of iso-distance contour line
and its property in discrete settings.

Definition 3: An iso-distance contour line (iso-contour for
short) of f−1(l), O(l), is defined as a neighbor graph of
f−1(l), such that:

(1)
⋂
∀O(l)

O(l) = ∅; and (2)
⋃
∀O(l)

O(l) =
⋃

eij∈E
N(eij , l).

As the iso-contour of f−1(l) is defined as the neighbor
graph of f−1(l), we have the following Lemma.

Lemma 3: Any two nodes in an iso-contour of f−1(l) is
l-connected, where two nodes in f−1(l) is l-connected, if
between them there is a path, the nodes on which are all in
f−1(l).

Lemma 3 implies the connectivity of an iso-contour, while
no guarantee of its closeness. In fact, there exist special
nodes, so-called “dead-end”, rendering the iso-contour un-
closed. They are closely related to the following parent/child
relationship.

Definition 4: For any epc = (vp, vc) ∈ E , if f(vp) = l,
f(vc) = l + 1, then vp is a parent node of vc; vc is a child
node of vp.

Definition 5: A node is a dead-end, if it has no child nodes.
Correspondingly, an edge eij = (vi, vj) is a dead-end edge if
either vi or vj is a dead-end.

We then have the following theorem that guarantees the
closeness of an iso-contour.

Theorem 4: An iso-contour with dead-end edges eliminated
is a connected and closed cycle.

Proof: See the Appendix.
So far, it is trivial to establish the discrete counterpart of a

continuous contour: to treat every dead-end edge as a double-
edge (detailed in Section III-C). For high genus surfaces where
there exist two or more iso-contours in a level set (see the two
iso-contours colored in black of f−1(14) in Fig. 3(e)), we
utilize the Reeb graph to cut off the genuses, and thus divide
the network into regions. Further strategies are then proposed
to guarantee the traversal intra and inter-regions.

B. Maximum Cut Set Identification
Based on the hop count distance function, we next use the

Reeb graph to identify the maximum cut set of M. To that
end, a distributed algorithm similar to that in [23] is carried
out, which evolves four major sub-steps:

The first sub-step is to identify nodes in each iso-contour
of f−1(l) with an iso-contour ID. This is done by randomly
selecting one landmark (so-called g-landmark) in an iso-
contour. After the g-landmark is selected, it performs flooding
within f−1(l), with the messages containing its iso-contour
ID and level index l. As such, all nodes in the iso-contour of
f−1(l) have the knowledge of the iso-contour ID.

Secondly, all the iso-contours inM are composed to regions
(arcs) of the Reeb graph. We say two iso-contours O(l) and

2015 IEEE Conference on Computer Communications (INFOCOM)

984

5

O()

O(+1) O (+1)

(a)

O()

O(+1)

(b)

O() O ()

O(+1)

(c)

Fig. 5. (a) The iso-contour O(l) is connected with O(l+1) and O′(l+1).
(b) The iso-contour O(l) is connected with O(l+1) only. (c) The iso-contour
O(l + 1) is connected with O(l) and O′(l).

O(l + 1) are connected, if there exist a node v in O(l) that
has a neighbor v′ in O(l+1). Then, v and v′ will notify this
connection to their corresponding g-landmarks. In particularly,
there exist three cases related to this connection, as shown in
Fig. 5. Correspondingly, the g-landmark notifies all nodes in
O(l+1) if O(l+1) is only connected with O(l). In this case,
the nodes in O(l + 1) are assigned a region ID the same as
that of O(l); otherwise, the nodes in O(l+1) will be assigned
a new region ID.

With the aforementioned two sub-steps, every node has a
region ID. The result of the Reeb graph is shown in Fig. 3(f),
where the Reeb graph regions are distinguished in colors.

Next, having the Reeb graph, all loop-end regions (arcs) can
be notified directly: if the g-landmark in O(l + 1) is notified
that it is connected with O(l) and another iso-contour O′(l)
(the case in Fig. 5(c)), then nodes in O(l + 1) and all other
iso-contours in the same region are notified to be in a loop-end
region.

Finally, to extract the maximum cut set Cmax, each loop-
end region performs a bisection operation to extract a cut.
Consequently, the loop-end region Im is bisected and a merged
region I ′α and I ′β is generated. Then it is simple to identify a
cut Ci: each node v in loop-end region Im sends a message
to its neighbor v′ in Im. If v′ has a different region ID with
v, v and v′ are notified to be cut nodes. Fig. 3(g) depicts the
result of the emerged regions and cut pairs.

C. Serial Traversal Scheme

After cut identification, M is divided into regions, each of
which contains several (uncut or cut) iso-contours. Aiming
at a SFC for the whole network, we first conduct the SFC
in each iso-contour, thereby connecting those curves for intra
and inter-region.

The SFC construction starts from the root node r, which
randomly chooses a neighbor as the next hop, say p, and
traverses to it. Then p marks itself as visited, and the traversal
path e(r, p) becomes the first section of the SFC. After that p
finds its next hop node q following NEXTHOP in Algorithm 1,
which deals with four situations according to the spatial
relationship between p and q.

Situation 1: p and q are within one uncut iso-contour. This
situation happens when p is not in the loop-end region, and
p has an unvisited neighbor q in the same iso-contour. Recall
a simple way to generate a local SFC in an iso-contour by
Theorem 4, in this situation, if p is a link node (the first visited

Algorithm 1 NEXTHOP(p)
1: cFlag ← false
2: rFlag ← false
3: if p is link node of a cut iso-contour then
4: q ← next hop on the shortest path to one randomly chosen

cut node in p’s iso-contour
5: else if p is cut node then
6: for each l-neighbor ngb of p do
7: if ngb is unvisited then
8: q ← ngb; cFlag ← true; break
9: if cFlag = false then

10: p follows the shortest path to the c-landmark in p’s iso-
contour; q ← the c-landmark

11: else
12: for each l-neighbor ngb of p do
13: if ngb is unvisited then
14: q ← ngb; cFlag ← true; break
15: if cFlag = false then
16: for each unvisited neighbor ngb of p do
17: if ngb.level = p.level ± 1 then
18: q ← ngb; rFlag ← true; break
19: if rFlag = false then
20: p follows the shortest path to an unvisited r-landmark;

q ← the r-landmark
21: return q

node in its iso-contour), the next couple of traversals are all
of this situation, until p has no unvisited neighbor in the same
iso-contour. And then Situation 3 comes. See Fig. 6(a) for
example.

Situation 2: p and q are within one cut iso-contour. This
situation happens when p is in the loop-end region, and p has
an unvisited neighbor q in the same iso-contour. It is noted
that a cut iso-contour is part of an uncut iso-contour, and cut
nodes are end-points of cut iso-contours. This motivates us to
start the traversal from a cut node in a cut iso-contour, and
to “exit” the cut iso-contour from a c-landmark (a randomly
selected node having at least one non-dead-end child). This
is done by a local flooding within the cut iso-contour, from
each cut node and each c-landmark after cut identification.
As a result, each node in the cut iso-contour knows its next-
hop node on the shortest path to each cut node and each c-
landmark. When p is a link node of a cut iso-contour, it first
follows the shortest path pointer to one of the cut nodes in
its iso-contour, and then starts traversal as in Situation 1, until
p has no unvisited neighbor in the same iso-contour. After
that, the last node follows the shortest path pointer to the c-
landmark in the iso-contour, and there comes Situation 3. See
Fig. 6(b) for instance.

Situation 3: p and q are in two different iso-contours. This
situation happens when p has no unvisited neighbor in its iso-
contour in Situation 1, or p is a c-landmark without unvisited
neighbor in its iso-contour in Situation 2. In the former
situation, p will choose an unvisited neighbor in a neighboring
iso-contour as its next hop (Note if all the unvisited neighbors
of p are dead-ends, p will choose its previous hop node as
its next hop, so as to guarantee the link node in the next iso-
contour is non-dead-end). In the latter situation, as c-landmark

2015 IEEE Conference on Computer Communications (INFOCOM)

985

6

are selected having at least one non-dead-end child, it directly
choose an unvisited neighbor in a neighboring iso-contour as
its next hop. If not, then Situation 4 comes. See the link edges
connecting two iso-contours colored in pink in Fig. 3(h).

Situation 4: p and q are in two different regions. This
situation happens when p has no unvisited neighbor in the
same region. To achieve a traversal inter-regions, we use r-
landmarks for piloting, where the r-landmarks are randomly
selected from boundary nodes (not cut nodes and having
neighbors in another region) in the same region. The r-
landmark selection process can be done in a region similar
to g-landmark selection in an iso-contour. As a result, each
region has one or more r-landmarks (depending on how many
regions it borders upon). Next, each r-landmark in one region
initiates a flooding, so as to know the next-hop node on the
shortest path to those r-landmarks in its neighboring region.
Meanwhile, by doing so high-order topological features (i.e.
regions and their connections) of M are identified by r-
landmarks. In this situation, p will choose an unvisited r-
landmark that has a minimum differential value of level index
as its next hop. As an example, Fig. 3(d) shows the traversal
order in different regions of the network in Fig. 3(a).

Note that the NEXTHOP algorithm does not consider q as
a dead-end. That is because on the one hand, dead-ends of an
iso-contour in f−1(l) have no effect on the l-connectivity of
other nodes in the iso-contour (by Lemma 7); and on the other
hand, in our scheme several methods are utilized to ensure the
link nodes are not dead-ends. So before p finds its next node
by the NEXTHOP algorithm, it first checks whether it has an
unvisited dead-end neighbor d, if does so, it just goes to d,
comes back, and continues to seek for its next hop; d marks
itself visited. See Fig. 6(c).

The path stretches as the serial traversal goes on, and in
the end, a SFC of M is constructed. Fig. 3(h) shows the
conducted SFC of the genus-2 torus network in Fig. 3(a). From
the aforementioned serial traversal scheme, it is not hard to
arrive at the following theorem that ensures the validity and
feasibility of SURF.

Theorem 5: The SFC generated by SURF ensures that every
node in M is covered at most (max

vi∈V
nd(vi) + nr + 2) times,

where nr is the number of the regions in the network, and

(a) (b) (c)

dead-ends

nodes in different levels shortest paths

cut nodes c-landmarks

Fig. 6. Several cases in serial traversal. (a) The traversal in an uncut iso-
contour. (b) The traversal in a cut iso-contour. (c) The traversal in an iso-
contour with dead-ends.

nd(vi) is the number of vi’s dead-end neighbors.
Proof: Without regard to the dead-ends, we consider the

following four situations: the traversal 1) within an uncut
iso-contour, 2) within a cut iso-contour, 3) between two
consecutive iso-contours within one region, and 4) between
two regions. First, the traversal within an uncut iso-contour
generates a local SFC based on Theorem 4, and every node
is covered only once. Second, the traversal within a cut iso-
contour results in a local SFC, owing to the cut node and the
c-landmark as the “entrance” and “exit” indicator in the cut
iso-contour, and every node is covered at most 3 times, e.g. the
c-landmark if it is also the link node of the iso-contour. Third,
two consecutive local SFCs within one region are connected by
the link edge, where the link node is designed non-dead-end,
and thus the connection is guaranteed; note that the covered
times of the nodes associated with link edges are counted in the
traversal within their respective cut/uncut iso-contours. Finally,
the SFCs in different regions are connected by the r-landmarks
in a sorted order, and there may be some node in M to be
covered (nr − 1) times, in the worst case, if it is shared by
all the traversals inter-regions. As the whole process is well-
guided in a deterministic manner, every node inM is covered
at least once, and at most (nr + 2) times. When taking into
account the dead-ends, the upper bound of the node’s covered
times becomes (max

vi∈V
nd(vi)+nr+2), in that the current node

will just conduct a back-and-forth travel to every unvisited
dead-end neighbor. Thus far, Theorem 5 holds.

D. Storage and Communication Cost

Storage and communication cost for nodes in WSNs are
important factors concerning scalability for a SFC construction
algorithm. Here, the storage cost is measured by the number of
the nodes (landmarks or IDs) stored, and the communication
cost is measured by the number of messages exchanged. We
shows the scalability of SURF by

Theorem 6: Both the storage cost and the communication
cost of every node in SURF are at most O(nr), where nr is
the number of r-landmarks in the network.

Proof: Let’s see the storage cost at first. First, every node
in the network maintains its neighbors’ ID with O(1) storage.
Second, every node in the cut iso-contours maintains a routing
table pointer to every cut node and every c-landmark in its
iso-contour, which incurs O(1) storage cost. Third, every r-
landmark maintains a routing table pointer to every other r-
landmark, with the storage cost O(nr). Hence, the storage cost
of every node in SURF is at most O(nr).

Next, we turn to communication cost. First, to construct the
iso-contours, every node has to communicate to its neighbors
to carry out the flooding initiated by the root node, and thus the
communication cost is O(1). Second, during the Reeb graph
establishment, every node in the process of g-landmark selec-
tion, iso-contour ID notification and region division generates
O(1) communication cost, respectively. Third, every node in
the process of cut identification has O(1) communication cost.
Finally, in the serial traversal process, the communication cost
is dominated by the traversal among different regions, which

2015 IEEE Conference on Computer Communications (INFOCOM)

986

7

incurs O(nr) communication cost. Overall, the communication
cost of every node in SURF is at most O(nr).

Often in comparison with the network size, the number of
r-landmarks is considered negligible. Here it is noted that we
do not consider severe cases such as a narrow line-like network
with many tiny genuses.

E. Discussion

One may concern that the constructed SFC does not have an
adaptive density, while causing a nearly fixed length path. In
some cases, it is undesirable to traverse an entire region before
getting information from another region. What is more, in
such applications in WSNs as the serial fusion and the motion
planning of mobile beacons, the length of a path may be
restricted by the travel budget or the required fusion delay [3].

To tackle this problem, SURF can be slightly modified,
obtaining a “sparser ” SFC to meet a given travel budget (that
could be much smaller than the length of the entire curve
generated by SURF). One simple and feasible solution is to
construct a SFC not by connecting every iso-contour. Instead,
we connect every kth iso-contour, where k is a parameter
adapting to the budget. Then the generated SFC should have a
shorter length (hopefully close to one kth). By doing so, one
can quickly tour around the network coarsely, get a rough idea
of the sensor data and gradually refine the density when more
travel budget is available or higher delay is allowed.

IV. PERFORMANCE EVALUATION

To evaluate the effectiveness of SURF, we have conducted
extensive simulations on various scenarios. We first examine
the performance of SURF in four 3D surface networks: a
genus-1 corridor, a genus-2 bowknot, a genus-3 smile and
a genus-4 window, with the average node degree between
8 ∼ 11. Fig. 7 shows the results of SURF, as well as the
statistical distribution of nodes’ covered times. It is observed
that, SURF delivers a stable performance and successfully
generates in each network a SFC, which traverses the whole
network with each node covered a small number of times. This
is consistent with Theorem 5.

We also evaluate another two SFC construction approaches
for comparison. Note that there are very limited algorithms to
compare with because previous SFC construction schemes are
proposed for 2D WSNs and cannot be directly applied in high
genus 3D surfaces. Among them, random walk may be the
sole comparable scheme. However, random walk either does
not ensure a full coverage, or results in a long traversal path
length, as discussed in Section I-A3. Hence, we additionally
propose random-SURF, a variant of SURF, as an alternative
comparison object. Random-SURF makes traversal first in
different iso-contours of one region, and then in different
regions, as is done in SURF. The difference is, random-SURF
chooses its next hop (intra/inter regions) at random.

Fig. 8 illustrates the network coverage percentage of random
walk, random-SURF and SURF in each 3D network at the
first time the network is fully covered by SURF. We can
see that SURF yields a faster traversal speed than other two

corridor bowknot smile window
0

0.2

0.4

0.6

0.8

1

C
o

v
e

ra
g

e
 p

e
rc

e
n

ta
g

e

Random−Walk Random−SURF SURF

Fig. 8. Comparison on the network coverage.

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Path length

C
o

v
e

ra
g

e
 p

e
rc

e
n

ta
g

e

Random−Walk

Random−SURF

SURF

(a) The genus-1 corridor

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Path length

C
o
v
e
ra

g
e
 p

e
rc

e
n
ta

g
e

Random−Walk

Random−SURF

SURF

(b) The genus-2 bowknot

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Path length

C
o

v
e
ra

g
e
 p

e
rc

e
n
ta

g
e

Random−Walk

Random−SURF

SURF

(c) The genus-3 smile

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Path length

C
o

v
e

ra
g

e
 p

e
rc

e
n

ta
g

e

Random−Walk

Random−SURF

SURF

(d) The genus-4 window

Fig. 9. The coverage v.s. the path length.

schemes, and the superiority of SURF is even more prominent
as the network becomes complex, say in the network of genus-
4 window. The better performance of SURF benefits from
its region division as well as c-landmark/r-landmark piloting,
while random walk and random-SURF are unrefined schemes
without explicit directions on how to speedily and orderly
traversing the whole network.

Fig. 9 further depicts how the specific network coverage
changes as the generated path moves forward by the three
algorithms in different networks. It can be seen that, SURF
always leads to a 100% network coverage however complex
the network is, and also with the fastest pace, while random
walk cannot achieve a full coverage in an competing pace. This
is not much surprising as SURF is a well-guided algorithm
while random walk is somewhat blind and luck-dependent.

It is also found that, in comparison with random walk,
random-SURF performs better in simpler topologies, say the
networks of genus-2 bowknot and genus-3 smile. The reason is
that, in contrast to random walk’s complete blindness, random-
SURF traverses the network in a more global way: before
aimlessly choosing its next hop, it has to find an unvisited
neighbor in its iso-contour or in its region, which to some

2015 IEEE Conference on Computer Communications (INFOCOM)

987

8

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Corridor

84%

11%

4% 1%

Nodes' covered times (Max=4)
1 2 3 4

(m)

Bowknot

83%

13%

3% 1%

Nodes' covered times (Max=5)
1 2 3 ≥ 4

(n)

Smile

79%

15%

4% 2%

Nodes' covered times (Max=7)
1 2 3 ≥ 4

(o)

Window

75%

15%

6%
4%

Nodes' covered times (Max=12)
1 2 3 ≥ 4

(p)

Fig. 7. Columns from left to right: (a) A genus-1 corridor network with 710 nodes; Avg deg is 8.92. (b) A genus-2 bowknot network with 837 nodes; Avg
deg is 9.35. (c) A genus-3 smile network with 1,102 nodes; Avg deg is 10.01. (d) A genus-4 window network with 5,366 nodes; Avg deg is 9.63. Rows: (1)
The original triangulated network. (2) The emerged regions of the Reeb graph and the maximum cut set. (3) The SFC generated by SURF. (4) The distribution
of nodes’ covered times.

extent alleviates its blindness.
In more complex scenarios, e.g. in the genus-4 window,

however, random-SURF is still far less effective than SURF
with respect to both coverage rate and coverage speed. After
all, random-SURF is randomized. Without the guidance of c-
landmarks in cut iso-contours or g-landmarks inter-regions,
random-SURF is inevitable running into locally infinite loop
at a certain time. That is why in Fig. 9(d), the coverage
percentage of random-SURF nearly keeps steady when the
path length is greater than roughly 3000.

As a matter of fact, in our tests in the genus-4 window,
either random walk or random-SURF requires a path length
more than 50 thousands to reach a 50% coverage. This is
because after a certain fraction of nodes have been visited,
both random walk and random-SURF are more inclined to
aimlessly find the last few unvisited nodes with a long time,
as we discussed in Section I-A3.

V. CONCLUSION

We have presented a novel distributed algorithm for SFC
construction in high genus 3D surface WSNs. It requests
the connectivity information only, and does not require in
advance knowledge of location or distance information. It is
also scalable since the node’s storage and communication cost
are independent on the network size. It has been proved that
our algorithm can generate a path covering each node at most
a constant number of times. Extensive simulations demonstrate
the effectiveness of our algorithm.

In the future, we would like to consider how to realize a
proportional coverage of the generated SFC, with an adaptive
density for a given traversal budget or delay constrain as in [3],
[21]. Besides, we only consider in this paper the orientable
closed 3D surface (compact and without boundaries). It would
be more challenging to design linearization schemes for more
general 3D surface networks, say with holes.

2015 IEEE Conference on Computer Communications (INFOCOM)

988

9

APPENDIX
PROOF OF THEOREM 4

A. Lemma 7

Lemma 7: Dead-ends of an iso-contour in f−1(l) have no
effect on the l-connectivity of the non-dead-end nodes within
the same iso-contour.

Proof: According to the size of the l-degree (defined as
the number of a node’s neighbors in its iso-contour), dead-
ends can be classed to the following two categories: dead-ends
with l-degree one, and dead-ends with l-degree more than one.
Fig. 10 shows the two cases of dead-ends.

nodes in level-l nodes in level-(l+1) dead-ends

vi

vj

(a) (b)

Fig. 10. Two cases of dead-ends.

For dead-ends with l-degree one, when they are removed,
the l-connectivity of the non-dead-end nodes in the iso-contour
is guaranteed by Lemma 3. For dead-ends with l-degree more
than one, we first claim that the neighbor nodes of a dead-
end in the iso-contour is directly connected (otherwise it
contradicts our assumption of a triangulated surface). So in
Fig. 10(b), nodes vi and vj are directly connected. Then it
can be seen that this kind of dead-ends cannot negate the
l-connectivity of the non-dead-end nodes in the iso-contour.
That is, Lemma 7 holds.

B. Proof of Theorem 4

Proof: On the one hand, Lemma 3 guarantees that any
two nodes in the same iso-contour are connected, and from
Lemma 7 we can see that dead-ends have no effects on the
connectivity of the iso-contour. So an iso-contour with dead-
end edges eliminated is connected.

On the other hand, we prove that an iso-contour with dead-
end edges eliminated is a closed cycle. That can be done
by the mathematical induction. We start from the root node
r = f−1(0). Recall that the network is a closed surface, so
f−1(1) contains one or more closed curves, i.e., any one of
the iso-contours of f−1(1) is a closed cycle. Note that there
is no dead-end edge in the iso-contour(s) of f−1(1). Assume
any one of the iso-contours of f−1(l) with dead-end edges
eliminated is a closed cycle. We next prove that any one of the
iso-contours of f−1(l+1) with dead-end edges eliminated is as
well a closed cycle. Three cases need to be considered: the iso-
contour of f−1(l+1) 1) without dead-ends, 2) with dead-ends
of l-degree one, and 3) with dead-ends of l-degree more than
one. In all cases, any one of the iso-contours of f−1(l + 1)
with dead-end edges eliminated is provably a closed cycle

following our assumption that M is closed and triangulated,
and we here omit the detail due to space limitations.

REFERENCES

[1] M. R. Akhondi, A. Talevski, S. Carlsen, and S. Petersen. Applications
of wireless sensor networks in the oil, gas and resources industries. In
Proc. of IEEE AINA, pages 941–948, 2010.

[2] J. M. Bahi, A. Makhoul, and A. Mostefaoui. Hilbert mobile beacon for
localisation and coverage in sensor networks. International Journal of
Systems Science, 39(11):1081–1094, 2008.

[3] X. Ban, M. Goswami, W. Zeng, X. Gu, and J. Gao. Topology dependent
space filling curves for sensor networks and applications. In Proc. of
IEEE INFOCOM, pages 2166–2174, 2013.

[4] H. Carr, J. Snoeyink, and M. van de Panne. Simplifying flexible
isosurfaces using local geometric measures. In Proc. of IEEE VIS, pages
497–504, 2004.

[5] Y.-C. Chung, I. Su, and C. Lee. An efficient mechanism for processing
similarity search queries in sensor networks. Information Sciences,
181(2):284–307, 2011.

[6] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and
V. Pascucci. Loops in Reeb graphs of 2-manifolds. In Proc. of ACM
SoCG, pages 344–350, 2003.

[7] J. Erickson and S. Har-Peled. Optimally cutting a surface into a disk.
Discrete & Computational Geometry, 31(1):37–59, 2004.

[8] C. Fischer and H. Gellersen. Location and navigation support for
emergency responders: A survey. IEEE Pervasive Computing, 9(1):38–
47, 2010.

[9] S. Funke and N. Milosavljevic. Network sketching or: ‘How much
geometry hides in connectivity? – part II’. In Proc. of ACM-SIAM
SODA, pages 958–967, 2007.

[10] A. Hatcher. Algebraic topology. Cambridge University Press, 2002.
[11] D. Koutsonikolas, S. M. Das, and Y. C. Hu. Path planning of mobile

landmarks for localization in wireless sensor networks. Computer
Communications, 30(13):2577–2592, 2007.

[12] M. Li and Y. Liu. Underground coal mine monitoring with wireless
sensor networks. ACM Transactions on Sensor Networks, 5(2):10, 2009.

[13] J. Luo and J.-P. Hubaux. Joint sink mobility and routing to maximize the
lifetime of wireless sensor networks: The case of constrained mobility.
IEEE/ACM Transactions on Networking, 18(3):871–884, 2010.

[14] S. Patil, S. R. Das, and A. Nasipuri. Serial data fusion using space-
filling curves in wireless sensor networks. In Proc. of IEEE SECON,
pages 182–190, 2004.

[15] G. Peano. Sur une courbe, qui remplit toute une aire plane. Mathema-
tische Annalen, 36(1):157–160, 1890.

[16] G. Reeb. Sur les points singuliers d’une forme de Pfaff completement
intgrable ou d’une fonction numrique. Comptes Rendus de L’Acadmie
ses Sances, Paris, 222:847–849, 1946.

[17] H. Sagan. Space-filling curves. Springer-Verlag New York, 1994.
[18] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu. Greedy routing with

guaranteed delivery using Ricci flows. In Proc. of ACM/IEEE IPSN,
pages 121–132, 2009.

[19] R. Sugihara and R. K. Gupta. Path planning of data mules in sensor
networks. ACM Transactions on Sensor Networks, 8(1):1–27, 2011.

[20] A. C. Viana, M. Dias de Amorim, Y. Viniotis, S. Fdida, and J. F.
De Rezende. Twins: A dual addressing space representation for self-
organizing networks. IEEE Transactions on Parallel and Distributed
Systems, 17(12):1468–1481, 2006.

[21] X. Wang, S. Han, Y. Wu, and X. Wang. Coverage and energy
consumption control in mobile heterogeneous wireless sensor networks.
IEEE Transactions on Automatic Control, 58(4):975–988, 2013.

[22] L. Xie, Y. Shi, Y. T. Hou, and H. D. Sherali. Making sensor networks
immortal: An energy-renewal approach with wireless power transfer.
IEEE/ACM Transactions on Networking, 20(6):1748–1761, 2012.

[23] T. Yu, H. Jiang, G. Tan, C. Wang, C. Tian, and Y. Wu. SINUS: A
scalable and distributed routing algorithm with guaranteed delivery for
WSNs on high genus 3D surfaces. In Proc. of IEEE INFOCOM, pages
2175–2183, 2013.

[24] X. Yu, X. Yin, W. Han, J. Gao, and X. Gu. Scalable routing in 3D
high genus sensor networks using graph embedding. In Proc. of IEEE
INFOCOM, pages 2681–2685, 2012.

[25] H. Zhou, H. Wu, S. Xia, M. Jin, and N. Ding. A distributed triangulation
algorithm for wireless sensor networks on 2D and 3D surface. In Proc.
of IEEE INFOCOM, pages 1053–1061, 2011.

2015 IEEE Conference on Computer Communications (INFOCOM)

989

