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Abstract— Federated learning (FL) is a privacy-preserving
machine learning paradigm that enables multiple clients to train
a unified model without disclosing their private data. However,
susceptibility to membership inference attacks (MIAs) arises
due to the natural inclination of FL models to overfit on the
training data during the training process, thereby enabling MIAs
to exploit the subtle differences in the FL. model’s parameters,
activations, or predictions between the training and testing data
to infer membership information. It is worth noting that most if
not all existing MIAs against FL require access to the model’s
internal information or modification of the training process,
yielding them unlikely to be performed in practice. In this paper,
we present with TEAR the first evidence that it is possible for
an honest-but-curious federated client to perform MIA against
an FL system, by exploring the Temporal Evolution of the
Adversarial Robustness between the training and non-training
data. We design a novel adversarial example generation method
to quantify the target sample’s adversarial robustness, which
can be utilized to obtain the membership features to train the
inference model in a supervised manner. Extensive experiment
results on five realistic datasets demonstrate that TEAR can
achieve a strong inference performance compared with two
existing MIAs, and is able to escape from the protection of two
representative defenses.

Index Terms—Federated learning, membership inference
attack, adversarial robustness, temporal evolution.

I. INTRODUCTION
EDERATED learning (FL) is a privacy-aware machine
learning paradigm that enables multiple clients to create a
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unified model without revealing their private training data [1],
[2]. The basic process involves training local models on
each client’s data and exchanging model updates (such as
the parameters and gradients of a learning model) between
federated clients to generate a unified model shared by all
clients. FL. embodies the principles of focused collection and
data minimization [3], and can reduce the storage complexity
and computational costs associated with collecting distributed
data. Without sharing data, FL can thus mitigate data privacy
and user confidentiality issues commonly encountered with
traditional centralized machine learning [4], [S]. Due to its
privacy-preserving capability, FL has been widely used in
many realistic applications, such as mobile keyboard predic-
tion [6], smart city [7], and recommendation systems [8].

However, recent works have demonstrated that FL models
are vulnerable to different attacks, including source inference
attacks [9], model inversion attacks [10], attribute inference
attacks [11], and property inference attacks [12], which leak
sensitive information present in the training dataset. In this
paper, we concentrate on the so-called membership inference
attacks (MIAs) against the FL model, where the adversary
aims to infer whether a given sample (i.e. the target sample)
was used as part of the training data of the given model.
Successful MIAs can lead to severe privacy risk to federated
clients. For instance, if an FL model is trained on the data
distributed across multiple medical institutions, then knowing
the target sample participating the model training process may
reveal the disease history as well as the treatment history of
the corresponding victim.

Despite extensive research efforts on MIAs against FL. mod-
els, most if not all existing studies make use of the inherent
overfitting property of FL models. Naturally, an FL model
would have more confidence in its prediction of the training
data compared with the non-training data. This prediction
confidence is reflected in the FL model’s prediction proba-
bilities [13], [14], [15], intermediate computation results [16],
and parameter gradients [17], [18], [19]. However, the success
of these MIAs relies on the access to the FLL. model’s interior,
through which the adversary can obtain its architecture and
parameters that is required to get the model’s prediction
probabilities and the intermediate computations. In addition,
a part of MIAs needs the ability to eavesdrop and manipulate
the client updates or gradients of FL. model parameters to
perform MIA [17], [18].
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Fig. 1.  The key observation on the temporal evolution of adversarial
robustness concerning the training and testing data of the FL model. The
settings are the same as described in Section V. It can be observed that the
adversarial robustness for training and testing samples demonstrates dissimilar
temporal evolution trends between the training and testing samples as the FL
training process proceeds. This difference implies that the temporal evolution
of adversarial robustness can serve as a viable indicator for distinguishing
training and testing samples.

Nevertheless, it is difficult for existing MIAs to obtain
the essential information to perform the inference in FL
systems. In practice, the model internal parameters and the
client updates are secured through Homomorphic Encryption
(HE) [20] or Differential Privacy (DP) [21] during both the
training and inference stages [3], [22]. In such a case, it is
almost impossible for an adversarial client to obtain the inter-
nal information of the FL model, not to mention decrypting
and manipulating the parameter updates and gradients. Against
this background, we consider a restricted scenario in which an
honest-but-curious client can only access to the local training
information of the FL model. To enhance the usability of MIA
in practice, we further assume the adversarial client can merely
obtain the label prediction interface of the current FL model at
the beginning of each local training round. Then a key question
arises naturally: is it possible to launch MIA against FL models
in restricted scenario where only the predicted label of the
queried sample is available?

In this paper, we present a novel MIA by exploring the
Temporal Evolution of the Adversarial Robustness (TEAR)
between the training and non-training data. With TEAR, we for
the first time demonstrate that it is possible for an honest-
but-curious federated client to perform MIA against an FL
system at the training stage. Our key observation is that the
convergence trend (called the temporal evolution) of an FL
model’s adversarial robustness, which refers to the tolerance
of a perturbation causing a misclassified result of the target
model, is different between its training and testing data (c.f.
Fig. 1). Specifically, the decision boundary of the FL. model
is gradually fitted to the training data during the training
process, whereas this is not the case for the testing data.
As a result, the distance between the decision boundary and
the training data gradually increases, which makes them less
susceptible to adversarial perturbations [23], [24], thereby
yielding a higher adversarial robustness. By continuously
collecting the adversarial robustness of target samples with
respect to the FLL model for different training rounds during
the training process, the temporal evolution of adversarial
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robustness can be obtained and further utilized as features to
train the membership inference model in a supervised manner.

We have to emphasize that although the idea sounds sim-
ple, the realization of TEAR confronts one major challenge:
how to quantify the adversarial robustness of the target
sample to strengthen the membership information hidden
in it? Some recent MIA works [25], [26], [27] leverage
adversarial attacks [28], [29], [30] to quantify the target
sample’s adversarial robustness. However, existing adversarial
attacks usually craft the target sample along the direction of
increasing the corresponding prediction loss, which cannot
directly reflect the relationship between the target model’s
decision boundary and the target sample. Furthermore, a recent
work [27] has demonstrated that the selection of adversarial
attacks largely determines the performance of the inference
attacks. Therefore, with merely the label prediction interface
of the target model, we need to design a novel adversarial
example generation method targeted at MIAs. Inspired by
the work [31] which finds that deep neural network (DNN)
models are biased toward low-frequency functions and flatten
decision boundaries, we leverage the direction consistency of
the normal vector of the decision boundary and the vector from
the target sample to its adversarial version to craft the target
sample. Then we regard the distance between the target sample
and the generated adversarial example as the quantitative
proxy for the corresponding adversarial robustness.

We conduct extensive experiments on five datasets, and
the results demonstrate that TEAR can achieve strong perfor-
mance, and in most cases can even outperform the white-box
MIAs [17], [25]. We also evaluate TEAR against two defense
mechanisms: DP-SGD [21] and MemGuard [32], and the
results show that TEAR can escape the protection of both
defenses. The results reveal the membership information hid-
den behind the temporal evolution of adversarial robustness of
FL models.

We summarize our major contributions as follows:

« We present TEAR, a novel client-side MIA against FL.
models with only black-box access. TEAR does not rely
on the internals of the FL. model (i.e. model parameters,
gradients, prediction probabilities, intermediate computa-
tions), nor manipulating the training process.

o« We observe the difference in the convergence ten-
dency of adversarial robustness between the training and
non-training data with respect to a given FL model, and
show for the first time how the temporal evolution of
adversarial robustness can be leveraged as an important
membership feature to facilitate MIA against FL models.

« We design a novel adversarial example generation method
tailed for MIAs to measure the distance of the target
sample to the decision boundary of the target FL. model,
which serves as a proxy for quantifying the adversarial
robustness of the given sample.

o We cvaluate the performance of TEAR on five realistic
datasets, and experiment results demonstrate that TEAR
can achieve a strong inference performance compared
with two existing MIAs. Further experiments show that
TEAR can threaten the membership privacy of FL. models
even with the protection of DP-SGD [21] and Mem-
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Guard [32]. The code of TEAR has been released for
reproducibility purposes.'

The remainder of this paper is organized as follows.
Section II describes some preliminary knowledge on FL and
adversarial examples. Section III defines the threat model,
followed by our design details in Section IV. Section V
presents the performance evaluation and Section VI provides
some discussions on defenses. Section VII reviews some
related works. Finally Section VIII concludes this paper.

II. PRELIMINARY
A. Federated Learning

FL is a distributed ML training paradigm that allows for
data training by coordinating multiple clients without requiring
access to the clients’ local data [33], [34]. In a typical FL
system, there are K federated clients Cy, C, - -- , Ck, and one
central server S which organizes the FL training process and
gets a converged global FL model M iteratively (c.f. Fig. 2).

Specifically, at the #,, training iteration (¢t € T, where T is
the number of FL training iterations), the training process of
the FL model M consists of the following four steps:

Step 1. The central server S disseminates the current global
FL model M! to the participating federated clients Cy (k €
1,2,---,K).

Step 2. Each client Cy locally trains and refines the received
model M' with its own data Dy in parallel. After the local
training is completed, the client Cy sends its updated model
parameters U, to the central server.

Step 3. The central server S collects the updated parameters
U'=[Uj,Uj, - ,Ug] from all participating clients.

Step 4. The central server S updates the global model
M on the basis of the aggregation of the collected parameter
updates U’. Then the newly updated model M'*! will be
disseminated to federated clients in the next training iteration.

The central server and clients of FL will execute the above
training process iteratively, until the termination criterion has
been satisfied (e.g. a maximum number of iterations is reached
or the model accuracy is greater than a threshold). After that,
the central server obtains the converged FL model M and
disseminates it to the clients.

In practice, FL frameworks such as FATE? and Pysyft}
potentially use multiple strategies to protect the confidentiality
of the exchanged information as well as the integrity of FL
model training process. For instance, FATE integrates TEE
technique into its framework to prevent the adversary from
compromising the training process, and Pysyft makes use of
DP, SMPC and HE to protect the model updates of federated
clients and the parameters of the disseminated model.

Note that FL. can be roughly separated into the horizontal
and vertical ones. The former is applicable to the scenarios
in which the data owned by federated clients share the same
feature space, while the latter often handles the cases in which
client datasets come from different feature spaces. Considering
the relatively simplicity of the horizontal FL and the resulting

Uhttps://www.dropbox.com/s/udrls6kxexdvrex/TEAR-Code.zip?d1=0
2https://fate.fedai.org/
3 https://github.com/OpenMined/PySyft
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wide application in practice, we focus on analyzing the leakage
risk of membership privacy for the horizontal FL.

B. Membership Inference Attacks

The goal of our paper is to investigate the leakage risks
of membership privacy with respect to FL models. For ease
of following our paper, we introduce the background of
MIA against machine learning (ML) models in this section.
Generally, MIAs exploit the inherent property that ML models
often behave differently on the data that they were trained on
versus the data that they meet for the first time. By leveraging
the prediction behavior of an ML model M (called the rarget
model), the inference adversary attempts to determine the
membership property of a target sample x, i.e., whether this
sample was used to train the target model or not. Successful
MIAs can breach the membership privacy of an ML model’s
training data, and pose new threats to training data providers.

More formally, the purpose of MIAs can be expressed as:

Ax|M, Q) — In/Out (€))

where A represents the attack model of MIAs, and In (resp.
Out) means that x is a member (resp. non-member) of M’s
training data. Here, Q2 is the external information about the
target model and its training data that A can obtain.

The attack model A is essentially a binary classification
model, and can be constructed in different ways depending
on the external information 2. According to previous works,
Q2 can be the target model’s internals (e.g., the model struc-
ture [35], [36], parameters [17], gradients [17], and the training
loss [37]), or its training data (e.g., data samples [35], [38],
[39], or data distribution [40]).

Recently, several MIAs have been proposed in FL scenarios,
which require the external information 2 of the internals of
FL models [13], [14], [15], [16], [18], [19] and even the
manipulation of the FL training process [17], [18]. Considering
these information is hard to obtain in FL systems, we thus aim
to design an MIA in a more restricted scenario, in which we
only have the access to the predicted labels of FL models.
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III. THREAT MODEL

We consider an honest-but-curious federated client as an
adversary, who will not deviate from the normal FL training
process but will attempt to infer the membership information
of other clients’ data from legitimately received FL models.
The details of our threat model are described as follows.

A. Target Model

We focus on assessing the membership privacy of a target
FL model, regardless of what model structure or type is. When
the central server of FL disseminates the current global model
M to federated clients, the adversarial client can access to its
local training process and obtain the prediction interface of the
received model M’. Then the adversary can query M’ locally
with data samples and get the corresponding predicted labels.
We formalize the received global model as: M : x — y, where
x is the queried data, y is the predicted label. Different from
the traditional MIAs which attacks against one trained ML
model, our adversarial client performs MIA during the iterative
training process of FL. In other words, the target model of
our attack is the combination of a series of FL global models

MUME o M

B. Adversary’s Knowledge

The objective of our paper is to reveal the membership
privacy risks in FL systems, where the local training process
occurs within a trusted execution environment and model
parameters are encrypted in practice [3]. Since the FL. model’s
prediction probabilities are usually noised for the security
purpose [35], [41], [42], we thus consider a restricted scenario
in which the adversarial client only requires its local data and
the prediction label of the target model which would remain
unaffected by these protections. In such a case, the adversary
cannot obtain any information about the following aspects:

o Target model structure: including the type and the struc-
ture of the target model.

o Target model internals: including the model parame-
ters, intermediate computations such as activation values
and gradients, and prediction probability vectors of the
model’s output layer.

o Global training process of FL: including the global
training process and the hyper-parameter settings (such
as client weight and global learning rate) controlled by
the FL central server.

o Samples or distribution of other clients’ training data:
including any samples of the other benign clients, or the
distribution of the training data for each individual client
or whole clients.

C. Adversary’s Capability

In our threat model, we assume that the inference adversary
is an honest-but-curious federated client, who can access but
cannot manipulate its local training process of FL. Therefore,
at each training iteration, the adversary can observe the current
global model M’(t € [1,2,---,T]). In our paper, we con-
sider a restricted label-only scenario, in which the adversary
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can query the global model M’ with a sample x and obtain
the predicted label y:

M x) =y @

During the FL training process, the current global FL model
is transmitted to every FL client at the start of each epoch.
However, this process has a vulnerability that a malicious
client can save these models on its local storage [70]. This
action allows the adversary to obtain a series of intermediate
parameter snapshots of the global model as it progresses
through training. To clarify, we denote the corresponding
prediction interfaces as [M!, M2, ..., MT]. Consequently,
these snapshots enable us to perform MIAs on any target
sample, whose membership property the adversary aims to
infer, after the FL training process has completed.

D. Adversary’s Goal

Given a target sample x;, and the observed global model
MY, M2, MT, the adversary’s goal is to infer whether
X; is in other clients’ training sets or not:

Afea MY, M2, -, MT]) — In/Out A3)

where Ay.q represents the attack model of TEAR.

IV. DESIGN OF TEAR

In order to assess the membership privacy of an FL. model,
we design an MIA dubbed TEAR from the perspective of an
honest-but-curious federated client. TEAR is involved in the
training process of the FL. model, and leverages the difference
of the temporal evolution of adversarial robustness between
the given FL model’s training and non-training (i.e. testing)
data to estimate the membership attribution. Overall, TEAR
mainly includes the following two parts (c.f. Fig. 3):

A. Adversarial Robustness Estimation

At every iteration of the FL training process, TEAR mea-
sures the adversary robustness of a given record x with
respect to the current global FL model M. An adversarial
example generation method is tailed to estimate the adversarial
robustness of x to M, which follows the normal vector on
the M’s decision boundary closest to X to generate minimal
perturbations that are sufficient to mislead the prediction of
M. By doing so, the adversarial version of x (denoted as X)
can thus be generated. Then we find the sample X that lies
on the decision boundary between x and X, and the distance
between x and X is regarded as the quantification of adversarial
robustness with respect to M.

B. Inference Model Construction

During the training process of the FL model M, TEAR
could observe a series of intermediate parameter snapshots
of the global model [M!, M2, ... MT]. By assessing the
observed intermediate global models, the adversarial robust-
ness evolutions of its local training data Dt“r’fl?gk” and testing

data D@tacker could be obtained. Then TEAR constructs

test
the binary inference model in a supervised manner, which
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takes the adversarial robustness evolutions of the Df’r’;?g"”

and D{aker a5 input and the membership properties of the
corresponding data as supervised output. After TEAR trained
the attack model, the inference model can be directly utilized
to determine whether the target sample X is in the other clients’

training data or not.

C. Adversarial Robustness Estimation

The key idea of the adversarial robustness estimation is to
estimate the distance from the target record to the decision
boundary of the target model, which would serve as the
quantitative proxy of the adversarial robustness. In order to
measure the decision boundary distance, we adopt adversarial
attacks to generate samples that lie on the decision boundary
of the target model. Then we treat the distance between the
target sample and its adversarial version as the estimation of
adversarial robustness.

Since the attacker can only get the predicted label of the
received FL. model, we consider a targeted adversarial example
generation method against a black-box model, which aims to
generate the adversarial example X to change the predicted
label of the target record x to a certain label y:

mvin D(x, X)
s.t. M(X) =y )

where M is the target model, yi is the targeted label which
could be any label but M(x), and D is a distance function for
x and X, such as cosine distance and L2 distance.

To generate X, we are motivated by the geometry property
of the adversarial perturbation v (v = X — x): the direction
of the minimal v for x equals the normal vector direction of
the decision boundary of the FL. model M at the boundary
sample X;, which is located on the decision boundary of the
target model and falls within the range of X; and x. Therefore,
we use cosine similarity to measure the direction deviation and

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

design the objective function as follows:
argmin L£(X)
X

s.t. M(X) = yx
_ <X—x,Nlg m >
[% = x|, [Nle A,

where <, > represents the inner product of vectors, |||, rep-
resents the length of the vector, N|;z o4 is the normal vector
of M at X, and X — x is the adversarial perturbation.

To optimize the above objective function, we leverage the
binary-search and gradient descent mechanisms. The opti-
mization process of our adversarial example generation is
described in Algorithm 1. The generation algorithm takes the
target sample x and the target label y; as inputs. At the i;p
optimization iteration, we first take the adversarial example
X;—1 generated in the previous iteration, and project X;_; to
the decision boundary by binary search and get X; (Line 2
of Algorithm 1). Then we estimate the normal vector Nz, aq
of the target model’s decision boundary at X by using the
Monte Carlo estimation method (Line 3 of Algorithm 1). After
that, we calculate the cosine similarity between X; — x and
Nlz, am (Line 4 of Algorithm 1). At the end of i;; optimization
iteration, we update our adversarial example X; by using the
gradient descent method. (Line 5 of Algorithm 1). It worth
noting that the initial adversarial example X could be any
random sample that satisfies the condition M (Xg) = yy.

1) Generating Adversarial Example: The process of our
adversarial example generation is illustrated in Fig. 4, which
mainly contains three steps:

a) Binary Search: Given the target sample x and its
adversarial version X which meets the condition of M(X) =
vt, we make use of the binary search algorithm to find the
example which locates at the decision boundary of the target
model along the line between x and X. The search process
will stop when a certain constrain is satisfied. The complete
binary search algorithm is described in Algorithm 2, where
the binary search threshold 6 is set to be a small constant.

b) Normal Vector Estimation: Given an example X
located at the decision boundary of M, we approximate the
normal vector N|z o via the Monte Carlo estimation method:

LX) = &)

1 B
Nlem i = 5 2 $&+ dup)up, 6)
b=1
_ [ ME + Sup) # i
G+ up) = | L M@& 4+ 81 = 3y, (7

where ¢ (X + Sup) represents whether the sample X + duy, is
adversarial or not, {ub}fz , are i.i.d. drawn from the uniform
distribution over the d-dimensional sphere, § is a small positive
constant and is proportional to ! [30], and B is the number
of disturbed groups.

c¢) Example Update: We implement our data updates
based on the objective function in Equation (5). We get
the gradient VL(X;) directly and use the gradient descent
algorithm for the adversarial example updates as follows:

X; =X;—1 —nVL(EXi—1) ®)
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Algorithm 1 Adversarial Robustness Estimation

Input: Target sample X, initial adversarial example Xy, target
model M, max iteration number /, binary search threshold
6, sampling size B, sampling radii 8, learning rate 7.
Output: Distance r from x to M’s decision boundary.

Algorithm 2 Binary Search

Input: Target sample x, adversarial example X, target model
M, threshold 6.

Output: A sample X located at M’s decision boundary.

1: Set X., = x and X4, = X
Generating Adversarial Example 2: while ||X¢;;, — Xgqv|| > 6 do

1. fori=1to do 3 Setxmidew
2:  X; < BinarySearch(x, X;—i, M, 6) 4 if MXpig) = MXaqy) then
3: Nl m < NormalVectorEstimation(X;, M, B, §) 5 Set Xadv < Xmid
4: L(Xi_1) << Xi_1 —X, Nl)_(i,./\/l > 6 else
5:  X; <ExampleUpdate(X;, L£(X;—1), 1) 7 Set Xein < Xmid
6: end for 8:  end if

Quantifying Adversarial Robustness 9: end while
7: X; < BinarySearch(x, X;, M, 0) 10: Set X = Xgqv
8: r = ||X; —x||2 11: return X

9: return r

(Line 7 of Algorithm 1), and then compute the L2 distance

where 7 represents the learning rate of the updates, and we can
achieve high optimization efficiency by adjusting the learning
rate and obtaining a suitable step size. However, in certain
cases, the updated sample X; may end up on the same side
of the decision boundary as the target sample, i.e., M(X;) =
M (x). To ensure that X; always belongs to the targeted label
Yk, we employ the following equation to project X; along the
line connecting X; and x:

X; < X; + ,3~X1—X2
X —xIl3
where 8 € [0, +00). We gradually increase 8 from O until the
projected X; is predicted to the target label by the target model.
Furthermore, since the updated adversarial example typically
does not lie on the decision boundary of the target model,
we need to apply binary search again to project it onto the
target model’s decision boundary.

2) Quantifying Adversarial Robustness: After generating
the adversarial example X;, TEAR next quantifies the adver-
sarial robustness of x with respect to M. To this end, we first
find the example X; located at the decision boundary of M

C))

r between X; and x (Line 8 of Algorithm 1). At the end,
we regard the distance r as the quantitative measurement for
the adversarial robustness of x.

D. Inference Model Construction

Now that we have got the adversarial robustness of the target
sample x, the next step of TEAR is to infer the membership
property of x. Though the adversarial robustness of x alone
does not provide a distinguishable membership feature [27],
we find that the temporal evolution of the adversarial robust-
ness between the training and testing data can be easily
distinguished, given a series of the intermediate parameter
snapshots of the FL global model [M{, M3, --- , Mr], where
T is the number of FL training iteration. As a consequence,
TEAR can construct the membership inference model by
exploiting the temporal evolution of the adversarial robustness.

1) Constructing Inference Model: Considering the adver-
sarial client can access to its local training data D;‘}Z‘;k” and
testing data D4/!4cker \e next construct a binary inference
model in a supervised manner. The reason for we can doing so

is that Da/lacker and paitacker can be regarded as a sampled
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subset from the aggregated dataset of all FL clients, whose
distribution is not significantly different from the other clients.
According to ML-Leaks [38], even it utilizes an existing
dataset that comes from a different distribution than the target
model’s training data to train the shadow model, the separation
boundary of member and non-member samples of the shadow
model could generalize to the target model. For the scenarios
considered in our work, we can directly treat the target model
as the shadow model and the condition of the data distribution
is much better than that of ML-Leaks and. Therefore, with
Déitacker anq paitacker - the attack model could learn the
separation boundary of member and non-member samples
which is shared across other FL clients.

Specifically, for each sample (X, yg;) in D;%j‘;k”, we mea-
sure its adversarial robustness of all possible labels with
respect to every model in [Mj, M>,---, Mr]. For clarity,
we denote the adversarial robustness of label y; against M,
as r;, where k is the predicted label that the FL model can
take except for y,,. Then for the attacker’s local training data,
the temporal evolution r is denoted as:

1.2 .3 T
l"l rl r13 ---rl
L (10)
1.2 .3 T

'k Tk Tk " Tk

Then we label the temporal evolution r of all training sam-
ples with In and combine them together to get the collection
of temporal evolutions Ry,. Then through the same operation,
we can get the same combination Ry for the attacker’s
testing data. It should be noted that the amount of training
data used to generate Ry, should be the same as the amount of
testing data used to generate Royg. At the final step of TEAR,
we utilize a supervised training algorithm on Roy¢ and Ry, to
obtain the inference model Ayy;.

2) Inferring Membership: Using the inference model AM 1,
an adversarial client can easily determine whether a given
sample belongs to the training data of other clients by directly
querying the temporal evolution of adversarial robustness r
obtained through AM . It’s important to note that with Ay,
we can conduct MIAs on multiple target samples simultane-
ously, as long as we can estimate the adversarial robustness
of those samples.

E. Discussion: TEAR in White-Box Case

In this paper, we assume the attacker is an honest-but-
curious client, who can only access to the prediction interface
of the global model during the training process. To this
end, we design an adversarial example generation method by
merely leveraging the predicted label of the target model.

In some cases, there may exist a part of stronger attackers
in FL such as malicious clients, honest-but-curious central
servers, or intermediary eavesdroppers, who can infiltrate the
FL model to obtain some white-box information like the
prediction probabilities or even internal model parameters.
Then existing adversarial attacks, such as Deepfool [43] and
C&W Attack [29], can be directly adopted in TEAR to
measure the adversarial robustness of the target sample.
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In our evaluation section, we compare the performance of
our original TEAR with the informed TEAR that integrates
Deepfool, SurFree, FMN, and C&W Attack. Please refer to
Section V-D for the experimental settings and results.

V. PERFORMANCE EVALUATION
A. Experimental Settings

1) Datasets: We use the following five datasets for evalua-
tion.

Adult.* Adult dataset includes 48, 842 records and each
record contains 14 attributes, such as age, gender, education,
marital status and occupation. The classification task is to
predict whether a person makes over $50K a year based on
the census attributes.

MNIST.S MNIST dataset is a collection of 70,000 hand-
written digital images. Each image consists of 28 x 28 pixels
and is normalized so that the digits are located at the center of
the image. The label is a one-dimensional array with a length
of 10, representing the specific digital value of the image.

CIFAR10.° CIFARI0 dataset is widely used for evaluating
image recognition algorithms, which is composed of 10 classes
of images with 6, 000 images per class. Each image consists
of 32 x 32 pixels. Overall, there are 50, 000 training images
and 10, 000 testing images.

Purchase.” Purchase dataset contains shopping histories
of several thousand shoppers over one year, including many
fields such as product name, store chain, quantity, and date of
purchase. In particular, Purchase dataset has 197, 324 records
but does not contain any class labels. Following Shokri el
al. [35] and Salem el al. [38], we adopt K-Means algorithm
to assign each data record with a class label. The numbers
of classes include 2, 10, 20, 50, and 100, and each class
corresponds to a purchase style.

FEMNIST.® Federated Extended MNIST dataset is an
image classification dataset which consists of 805, 263 images
with 62 classes. This dataset is constructed by dividing the
data in Extended MNIST [44] into 3,550 parts according
to the source of the digit/character images. This dataset is
inherently non-IID with data quantity and class distributions
heterogeneity.

2) Target Models: We wuse the famous FedAvg
algorithm [45] to train the target FL model. We set the
number of federated clients to 5 and the iteration number of
FL training to 10. During every training iteration, federated
clients train the received FL model no more than 10 rounds
on their own data. As for the data separation, we equally
divide the used dataset into 5 parts and randomly assign each
part to one client.

For different datasets, we use different global FL. models,
and the model structures are shown in Table I. Particularly,
FC layer represents fully connected layer in DNN models.
Conv. layer means convolutional layer and Pool. layer means

4https://archive.ics.uci.edu/ml/datasets/Adult

5 http://yann.lecun.com/exdb/mnist

6http://www.cs.toronto.cdu/ kriz/cifar.html
7https://Www.kaggle.com/c/acquire—valued—shoppers-challenge/data
8https://leaf.cmlLedu
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TABLE 1
THE ARCHITECTURES OF FEDERATED MODELS
Dataset Model Architecture
Adult 2 FC layers
MNIST 2 Conv., 2Pool., and 3 FC layers
CIFARI10 2 Conv., 2Pool., and 3 FC layers
Purchase 3 FC layers
FEMNIST 2 Conv., 2Pool., and 2 FC layers

maxpooling layer in convolutional neural network (CNN)
models.

3) Settings of TEAR:

a) Adversarial Robustness Estimation: As discussed in
Section IV-E, TEAR can also adopt existing adversarial attacks
to obtain the adversarial robustness, when the attacker has
the white-box access to the target FL. model. Therefore,
we perform TEAR in both white-box and black-box scenarios.

For the black-box case we mainly consider in this paper,
we set the initial maximum number of iterations / = 50 and
the number of gradient queries B = 5000. We use the cosine
similarity as a measure of the loss function and SGD algorithm
to update the samples. We set the learning rate n = 0.3 for
CIFARI10 dataset and n = 0.005 for other datasets.

In the white-box case, we use Deepfool [43] to measure the
distance from the target sample to the decision boundary of the
target model. For the hyper-parameters of Deepfool, we set the
maximum number of iterations to 500 and the amplification
factor to 0.02.

b) Inference Model Construction: We adopt the method
of supervised member inference attack, using sample-decision
boundary distance matrix as the input value of the attack
model, and the data belonging to the member (or not) as
the label to train the binary classification inference model.
We randomly select 500 samples from the adversarial client
(half from training set and half from testing set) and use the
corresponding adversarial robustness to construct the inference
model. We train a gradient boosting model as our inference
model with the open-source library Xgboost.” Then we con-
struct an evaluation dataset by randomly selecting a part of
records from the federated clients’ training and testing data on
which we evaluate the performance of our inference model.

4) Metrics: Since the inference attack essentially is a binary
classification task, we adopt the standard metrics in ML
filed, including accuracy, precision and recall, to evaluate the
performance of TEAR. Specifically, accuracy represents the
proportion of target samples whose membership properties
are correctly inferred. Precision presents the proportion of the
data samples predicted as members of the federated clients’
training data that are indeed in. Recall presents the fraction of
the training samples that we can correctly infer as the training
samples of the federated clients.

To further compare the performance of our attack and the
comparisons, we also report FI-score of MIAs which is pri-
marily used to compare the performance of two classification
models in ML field. FI-score is the harmonic mean of the

9https:// github.com/dmlc/xgboost
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precision and recall of MIAs, which can be calculated as:

2(Precision x Recall)

(1)

Fl-score =

Precision + Recall

Generally, precision (resp.recall) measures the accuracy (resp.
coverage) of MIAs. With Fl-score, we could evaluate the
performance of TEAR with both precision and recall.

5) Comparison Methods: We consider the following four
MIAs for comparisons. The first one is proposed by
Nasr et al. [17], which employs an auto-encoder architecture
to reconstruct the signals associated with the membership
property using the final layer outputs of the target FL. model.
The auto-encoder consists of an encoder with four MLP layers
and a decoder with two MLP layers. Subsequently, the output
of the encoder serves as the membership score for the target
samples. With the membership score, this method utilizes the
unsupervised spectral clustering model to cluster the target
samples into two parts, and predicts the cluster with a lower
prediction uncertainty as the member of training set.

The second comparison is proposed by Choquette-Choo et
al. [25]. For the target models that only output the predicted
labels, this method uses a label-only adversarial attack, namely
“HopSkipJump” [30], and sets a query budget of 1,000 to
estimate the distance of the target sample to the target model’s
decision boundary. Specifically, HopSkipJump generates a
random direction for the perturbation and iteratively improves
this perturbation by employing gradient-based optimization to
locate the direction that maximizes the loss function. If the dis-
tance is greater than a predefined threshold, this sample would
be considered as a member of the training set. We determine
the threshold with the local data of the adversarial FL client
in our experiments.

The third comparison is proposed by Del Grosso et al. [46],
which involves Auto-Attack [47] to generate an adversarial
example for a given target sample from a trained model.
Then the I, (p € {1,2,0c}) distance between the given
sample and the generated adversarial example is calculated to
determine the membership by a preset threshold value. In our
experiments, we set the budget of iterations of Auto-Attack
to 500 and determine the threshold by evaluating the attack
accuracy on the local data of the adversarial FL client with
varying values.

The fourth comparison is proposed by Liu et al. [48], which
employs the knowledge distillation technique and a shadow
dataset to replicate the target model’s training process. Then
the distilled model is treated as the shadow model and the
intermediate training states are saved at various distillation
epochs. The shadow dataset is evaluated on the sequence of
intermediate shadow models, and the resulting training loss
trajectories are recorded and used to construct an attack model
to perform MIAs. In our experiments, we randomly select half
of the training and testing data from all FL clients to create the
shadow dataset for this attack. We designate the final trained
FL model as the target model and construct the shadow model
with 100 distillation epochs.

It is noteworthy that the first comparison method [17]
is designed for FL models, while the rest comparison is
specifically intended for FL models, the remaining comparison
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methods [25], [46], [48] are intended for MIAs against central-
ized models. In order to ensure fairness in our comparison, all
comparison attacks are conducted against the trained FL global
model. As for constructing the attack model and determining
the attack threshold, we leveraged adversarial FL client’s local
training and testing data labeled with membership properties
to provide the necessary information. We perform the above
four attacks as well as TEAR on randomly selected samples
from the benign federated clients’ training and testing datasets,
where the number of training samples is set equal to the num-
ber of testing samples, in order to maximize the uncertainty
of inference (thus the baseline accuracy is 0.5, equivalent to
the random guess).

B. Performance of TEAR

We first evaluate the performance of TEAR on diverse
types of datasets to showcase the generalization of our attack
against different FL models. The parameter settings of TEAR
and comparison methods are the same as those described
in Section V-A unless otherwise specified. In this section,
we utilized the grid search method provided by Scikit-Learn
library to adjust the hyperparameters of the attack models,
in order to obtain the best attack performance that TEAR can
achieve. This will help us analyze the utmost risk of privacy
leakage during the FL training process. The experiment results
are shown in Table II.

In order to clarify the overfitting level of target models
which is a vital factor for MIAs, we also record the perfor-
mance of the target FL. models. Table III shows the training
and testing accuracy of target models on each used dataset. The
difference between the model’s training and testing accuracy
indicates the overfitting level.

From the results in Table II, we can find that even with
merely black-box access of the target models, our attack can
achieve a strong inference performance compared with four
comparison attacks. It is noteworthy that TEAR’s performance
on certain datasets with white-box access to the target FL
model is poorer than that with black-box access. The main
reason is that the adversarial robustness estimated by Deepfool
is less accurate compared to our estimation method. The
same issue arises in the comparison work [25] which uses
“HopSkipJump” method to estimate the adversarial robust-
ness. We will further discuss the impact of the selection of
adversarial robustness estimation method in Section V-D.

As for the specific results, for Adult dataset, TEAR with
black-box access can get an attack accuracy of 0.610, which
is better than the two comparisons. For MNIST dataset, TEAR
achieves an attacking accuracy of 0.740. For Purchase dataset,
with the increase of the number of classes, the number of deci-
sion boundaries increases and more membership information
leaks. As the number of class increasing, the overfitting level
of the target model increases, and the attacking performance
of TEAR becomes even better.

Specifically, for Purchasel00 dataset, the precision and
recall of TEAR can reach to 0.809 and 0.917, respec-
tively. As for Purchase2, TEAR only achieves a precision of
0.722 and a recall of 0.750. For CIFAR10 dataset, the attack of
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TEAR gets a precision of 0.836 and a recall of 0.859. For the
FEMNIST dataset, our MIA also gets relatively good results.
The attacking precision is 0.742 and the recall is 0.831, which
demonstrates that TEAR can be extended to non-iid data in a
more complex federated environment.

Overall, no matter black-box or white-box access TEAR
has to the target models, it demonstrates a superior attack
performance against most FL. models compared to the four
comparisons. We compared our white-box attack (i.e., TEAR
with Deepfool) with the methods proposed in [25] and [46]
that only estimate the adversarial robustness on the final
trained model. Our comparison confirmed that the temporal
evolution of adversarial robustness poses a serious threat to the
membership privacy of FL models’ training data. We also com-
pare our attack with [48] that only uses the temporal trajectory
of the training losses. We find that adversarial robustness
can provide much more detailed membership features of the
target samples. Based on the experimental results, we can
conclude that both our method and Liu et al. [48] exceed the
performance of the other three comparison methods. This is
because during the training process, the attacker can utilize
multiple snapshots of target models and obtain the temporal
evolution of membership features.

C. Impact of Quality of Adversarial Example

In TEAR, the influence of parameters (especially the num-
bers of adversarial iterations and queries ) will affect the
quality of the generated adversarial samples, so that the
distance from the original sample to the decision boundary will
be changed. In order to achieve a fair comparison of different
adversarial iterations and queries, we construct our attack
models using the same set of hyperparameters. This approach
ensures that any performance differences are primarily due
to variations in the parameters of the adversarial sample
generation, rather than differences in the hyper-parameters
of the attack models. In the following, we evaluate the two
parameters using Purchasel00 and CIFAR10 datasets.

1) Impact of Number of Adversarial Iterations: The number
of adversarial iterations refers to the times of updating adver-
sarial samples through SGD optimization. In order to obtain
the adversarial sample closest to the original sample, we set the
gradient query times as 5,000 through multiple experiments,
and the number of iterations starts from 10 to 90.

Fig. 5 shows the result of impact of adversarial iterations.
We can see that for both Purchase100 and CIFAR10 datasets,
the more adversarial iterations, the better the inference per-
formance. For example, the precision and recall are 0.800 and
0.825 for 90 iterations compared to 0.633 and 0.655 for 10 iter-
ations on CIFAR10 dataset. When the number of iterations is
small, the adversarial attack model will not converge. Thus
the overall cosine similarity between the normal vector of the
decision boundary and the vector from the target sample to its
adversarial example would be small. This leads to the higher
adversarial disturbance and lower inference performance. The
attack accuracy reaches the highest when the number of
iterations comes to a certain value, where the adversarial attack
has converged and gets the closest point to the target sample.
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TABLE I

ACCURACY, PRECISION, RECALL, AND F1-SCORE (%) OF OUR METHODS AND FOUR COMPARISON METHODS (BOLD INDICATES THE HIGHEST ONE,
AND UNDERLINE INDICATES THE SECOND HIGHEST ONE)

Attack Metric Adult MNIST CIFAR-10 | Purchase2 | Purchasel0 | Purchase20 | Purchase50 | Purchasel00| FEMNIST
Accuracy 0.610 0.740 0.830 0.720 0.730 0.750 0.800 0.820 0.730
TEAR Precision 0.656 0.731 0.836 0.722 0.741 0.771 0.789 0.809 0.742
(black-box) Recall 0.667 0.760 0.852 0.750 0.755 0.810 0.820 0.917 0.831
F1-Score 0.661 0.745 0.844 0.736 0.748 0.790 0.804 0.859 0.784
Accuracy 0.610 0.760 0.810 0.710 0.730 0.760 0.770 0.810 0.770
Eé‘}o‘:{ Precision ||  0.649 0.732 0.850 0721 0750 0.787 0.794 0.813 0.776
(whitg-hox) Recall 0.661 0.820 0.836 0.646 0.764 0.814 0.833 0.881 0.831
F1-Score 0.655 0.774 0.843 0.681 0.757 0.800 0.813 0.846 0.797
Accuracy 0.524 0.560 0.665 0.549 0.581 0.604 0.624 0.674 0.606
Nasr et al. [17] Precision 0.502 0.548 0.655 0.504 0.552 0.597 0.633 0.641 0.556
’ Recall 0.528 0.592 0.684 0.563 0.592 0.629 0.657 0.691 0.634
F1-Score 0.515 0.569 0.669 0.532 0.571 0.612 0.645 0.665 0.592
Accuracy 0.587 0.601 0.785 0.687 0.715 0.729 0.755 0.808 0.715
Choquette- Precision 0.565 0.628 0.739 0.639 0.703 0.714 0.764 0.794 0.723
Choo et al. [25] Recall 0.643 0.663 0.815 0.699 0.719 0.732 0.780 0.836 0.737
F1-Score 0.602 0.645 0.775 0.668 0.711 0.723 0.771 0.814 0.730
Accuracy 0.580 0.700 0.730 0.660 0.680 0.720 0.720 0.740 0.670
Del et al. [46] Precision 0.556 0.686 0.752 0.672 0.695 0.692 0.744 0.764 0.647
: Recall 0.610 0.712 0.788 0.698 0.703 0.769 0.773 0.795 0.712
F1-Score 0.582 0.699 0.770 0.685 0.699 0.728 0.758 0.779 0.680
Accuracy 0.610 0.730 0.790 0.700 0.700 0.740 0.760 0.760 0.720
Liu et al. [48] Precision 0.636 0.702 0.814 0.716 0.716 0.732 0.771 0.785 0.730
' Recall 0.644 0.759 0.835 0.748 0.748 0.764 0.790 0.823 0.796
F1-Score 0.640 0.729 0.824 0.732 0.732 0.748 0.780 0.804 0.762
TABLE III 09 09
THE PERFORMANCES OF FEDERATED MODELS 0.8 0.8
Dataset Training Accuracy | Testing Accuracy é =
Adult 0.8505 0.8490 i g%
a
MNIST 0.9909 0.9859 06 R 06 R
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CIFAR10 0.7801 0.6201 ripinkiog ripinkiog
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Purchase10 0.9518 0.9301 Adversarial Queries Adversarial Queries
Purchase20 0.9276 0.8782 (@) (b)
Purchase50 0.9235 0.8103 Fig. 6. Precision and recall of TEAR vs. number of queries.
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Fig. 5. Precision and recall of TEAR vs. number of iterations.

2) Impact of Number of Adversarial Queries: The num-
ber of adversarial queries refers to the number of disturbed
samples generated when we use Monte Carlo algorithm to
estimate the gradient of adversarial data on the decision
boundary. As stated before, through repeated experiments,
we set the optimal number of adversarial iterations as 50 for
the Purchasel00 dataset and 60 for CIFARI10 dataset. The
number of adversarial queries is evaluated every 1,000 rounds
from 1,000 until it reached 9,000.

(a) Purchase100 Dataset

(b) CIFAR-10 Dataset

Fig. 7. Comparison of adversarial attacks. The radius of each sector
represents the data proportion of the corresponding angle, and the dashed
line represents the average angle.

From the results in Fig. 6, we can see that better inference
performance can be achieved with the increase of query times.
For CIFAR10 dataset, the precision increases from 0.644 to
0.800 and the recall increases from 0.691 to 0.833. While
the query times continue to increase, the attack performance
started to be stable. Small query times cause large gradient
estimation deviation of the adversarial sample at the decision
boundary and the calculation error of loss value, which reduce
the quality of adversarial sample and interfere with TEAR.
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TABLE IV

ACCURACY, PRECISION, RECALL, AND F1-SCORE (%) UNDER DIFFERENT ITERATIONS
(a) Purchasel00 Dataset

Attack Types TEAR (black-box) TEAR w/ Deepfool (white-box)
Metrics Accuracy | Precision | Recall | F1-Score || Accuracy | Precision | Recall | F1-Score
1,2,..,10 0.820 0.809 0.917 0.859 0.810 0.813 0.881 0.846
Observed Iteration 10 0.720 0.722 0.867 0.788 0.730 0.750 0.836 0.791
5 0.660 0.703 0.750 0.726 0.730 0.714 0.784 0.748
(b) CIFAR10 Dataset
Attack Types TEAR (black-box) TEAR w/ Deepfool (white-box)
Metrics Accuracy | Precision | Recall | Fl-Score || Accuracy | Precision | Recall | F1-Score
1,2,..,10 0.830 0.836 0.852 0.844 0.810 0.850 0.836 0.843
Observed Iteration 10 0.800 0.804 0.833 0.818 0.730 0.727 0.842 0.781
5 0.760 0.759 0.815 0.786 0.690 0.702 0.741 0.721

D. Comparison of Adversarial Attacks

In this section, we dive into the performance of our adver-
sarial attack. The performance of the adversarial attack directly
determines the quality of adversarial samples, thus affect-
ing the distance estimation from data to decision boundary.
We select a white-box attack, i.e. C&W [29], as our baseline.
In order to evaluate the performance of our adversarial exam-
ple generation, we compare the cosine similarity between the
normal vector of the decision boundary and the vector from the
target sample to its adversarial example generated by TEAR,
SurFree [49], FMN [50], and Deepfool [43]. Then we briefly
introduce each comparison.

1) SurFree: This method initially identifies the adversarial
example to the target sample and then seeks a perturbation that
shifts the target sample to the opposite side of the decision
boundary of the target model.

2) FMN: This attack estimates the gradient of the loss
function in the feature space, and then perturbs the input along
the estimated gradient direction.

3) Deepfool: This algorithm regards the target model’s
decision boundary as a hyperplane that separates the input
data space into regions associated with different output classes.
Then it iteratively generates slight perturbations that move the
target sample towards the vertical direction of the decision
boundary.

Fig. 7 visualizes the histogram of deviation: 6 =
arccos m where s; is the vector between the original
data and the generated adversarial data and s¢ is the baseline
vector. The results show that our adversarial attack in TEAR is
much closer to the baseline than SurFree, FMN, and Deepfool,
which presents that TEAR achieves a better performance. The
complexity and randomness of the data result in a wide range
of angle differences between vectors in both TEAR and the
comparison attacks, but the average angle of TEAR is much
smaller than that of comparisons. The main reason for TEAR’s
ability to generate adversarial examples with direction closer to
the baseline attributed to its use of the geometric relationship
between the target sample and the decision boundary of the
target models. By constraining the direction of the adversarial
examples along the normal vector of the target model’s deci-
sion boundary, TEAR is able to directly find the adversarial
examples around the target sample. This approach, which is
not taken into account in current adversarial attacks, leads to

a smaller direction deviation between the target sample and
the adversarial example generated by TEAR.

Taking Purchase100 dataset as an example, the mean angle
deviation between TEAR and C&W attack reaches to about
10° (the red dash line), while FMN’s and Deepfool’s are
close to 15° (the blue dash line) and 20° (the green dash
line) respectively. In such a case, the angle deviation of
SurFree even is larger than 40°. The angles of TEAR are
mainly distributed within 15° difference from that of C&W
attack. However, for the Surfree, FMN and Deepfool attacks,
there are a lot of angle deviations which are more than 20°.
In addition, we can observe a similar phenomenon from the
experiment results of CIFAR10 dataset. In general, TEAR
can generate the adversarial examples with a smaller angle
deviation from the target model’s decision boundary. The main
reason is that TEAR uses the geometric relationship between
the target sample and the decision boundary of the target
models to directly find the adversarial examples along the
decision boundary around the target sample. This approach
constrains the direction of the adversarial examples and is not
taken into account in current adversarial attacks.

E. Validity of TEAR

For TEAR, we use the information from models on each
global epoch. We capture model member leakage by means of
the distance difference between the training and testing data
to the decision boundaries of the multiple intermediate FL
models. In this section, we discuss validity of TEAR by just
using one observed snapshot of FL. model and performing the
attack by distance features of this FL model. We take the
global model of the last round and some rounds in the middle
of FL for experiments, in both black-box and white-box.

Table IV shows the results under different observed iter-
ations. In any case, compared to the attack using all model
snapshot observed through the whole training process, the
attack on one model snapshot is much less effective. If we use
the model disseminated at the end of FL training process, there
is a little bit better performance than the middle model, mainly
because the overfitting degree of the model becomes higher
with the training of the model. For instance, in Purchase100
dataset, TEAR can get 0.82 accuracy and the white-box
version gets 0.81. However, the results become 0.72 and 0.73 if
we merely use the FL model disseminated by the central server
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TABLE V
ACCURACY, PRECISION, RECALL, AND F1-SCORE (%) UNDER THE DEFENSE OF DP-SGD AND MEMGUARD

(a) Purchase

100 Dataset

Attack Types TEAR (black-box) TEAR w/ Deepfool (white-box)
Metrics Accuracy | Precision | Recall | FI-Score Accuracy | Precision | Recall | FI-Score
No Defense 0.820 0.809 0.917 0.859 0.810 0.813 0.881 0.846
Defense DP-SGD 0.780 0.810 0.900 0.830 0.790 0.776 0918 0.841
MemGuard 0.820 0.809 0917 0.859 0.810 0.813 0.881 0.846
(b) CIFAR-10 Dataset
Attack Types TEAR (black-box) TEAR w/ Deepfool (white-box)
Metrics Accuracy | Precision | Recall | FI-Score Accuracy | Precision | Recall | FI-Score
No Defense 0.830 0.836 0.852 0.844 0.810 0.850 0.836 0.843
Defense DP-SGD 0.750 0.776 0.809 0.792 0.800 0.837 0.837 0.837
MemGuard 0.830 0.836 0.852 0.844 0.810 0.850 0.836 0.843

at 10, iteration and the accuracy is even lower for the model
grasped at 5;; training iteration. Overall, we can find that
with all model snapshots of FL. models throughout the training
process, our MIA can enrich the membership information and
thus get better attacking performance.

VI. DISCUSSION ON DEFENSES

A. Existing Defenses

In FL, the attacker can easily obtain user’s data and model
information through MIAs. In order to reduce the member-
ship leakage, many defense methods are proposed recently.
We largely classify these defenses into the following three
categories:

1) Differential Privacy: DP [51] is a widely used privacy
protection method in many applications, such as location-
based services [52] and healthcare services [53]. Many stud-
ies [25], [26], [32], [54], [55] have applied DP to learning
models to mitigate MIAs. Current DP technologies hide real
data and achieve defensive effects by adding noise to the train-
ing data of users [56], the object function [57], or the gradient
computed by gradient descent during the training process [21],
[54], [58]. For instance, Abadi et al. [21] propose DP version
of stochastic gradient descent (DP-SGD), which adds random
Gaussian noise to the gradient during model optimization with
SGD. Our MIA may be affected by DP with perturbing the
gradient, because the decision boundary will be changed with
the noise on gradients during the FL training and TEAR will
be misled for distinguishing the members and non-members.

2) Confidence Score Masking: Confidence score masking
is mainly used to defend against MIAs in black-box case
to provide membership privacy guarantees. It aims to hide
or change the true confidence scores returned by the target
classifier so that both members and non-members look like
similar examples to the attack model. For instance, the target
classifier can only provide top-k confidence scores instead of a
complete prediction vector to the attacker. As the first defense
with formal utility-loss in this category, MemGuard [32] adds
noise to posterior probabilities of the target model with a
certain probability and forms a defense classifier simulating
the attack classifier to mislead the membership inference.
It would be interesting to apply this countermeasure in FL

with adding noise to posterior probabilities of the each local
models to affect the global model and defend against MIAs.

3) Regularization: Regularization is a very common
defense in MIAs and it mitigates attacks by reducing the
overfitting degree of target models. It can help the model
generalize better to testing data and reduce the difference of
members and non-members. Existing regularization defense
methods including L2-norm regularization [25], [35], [59],
dropout [60], data argumentation [61], [62], model stack-
ing [38], and adversarial regularization [59].

B. Defense Evaluation

In our experiments, we use DP-SGD and MemGuard as
examples to evaluate our attacking performance against the
MIA defenses. In our experiment, we implement DP-SGD
using the open-source package Opacus'® directly, and adopt
the original implementation of MemGuard.'! We observe our
attack in both black-box and white-box cases.

Table V shows the results against different defenses. We find
that DP-SGD reduces our attack accuracy to some extent,
which suggests that DP-SGD interferes with our attack by
changing the training of the local model, and thus degrades
the prediction performance of the target model. However, the
impact on the overall attack performance is not obvious, and
in some cases it is even better than the undefended, indicating
that our attack model has some stability. Black-box attacks
under CIFARI10 datasets are most affected, mainly due to
the complexity of the dataset and the high requirement on
the predictive ability of the target model in TEAR. We also
notice that MemGuard has no effect on our attacks. Although
MemGuard changes the posterior probabilities of the target
model, the prediction label of the model will not be affected.
Our attacks only exploit the predictive labels of the inputs,
so MemGuard cannot defend against our attacks at all.

It should be noted that our black-box TEAR demonstrates
superior performance compared to the white-box TEAR attack
with Deepfool in some cases. The main reason is that TEAR
utilizes the adversarial robustness of the target sample with
respect to the target model to conduct inference attacks. The
attack effectiveness of TEAR is directly related to the accuracy

10https:// github.com/pytorch/opacus
Whttps://github.com/jjy1994/MemGuard
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of the estimated adversarial robustness. As discussed in the
previous section (c.f. Fig. 7), although the distribution of
adversarial robustness estimated by the black-box TEAR and
Deepfool are similar, Deepfool performs more accurately than
our method on a part of samples. As a consequence, our
black-box TEAR attack can generally achieve comparable
performance to the white-box TEAR attack with Deepfool.

C. Possible Defenses

From the experiment results shown in Table V, we could
see that TEAR could breach MemGuard and DP-SGD by
achieving reasonable attack performance. Different from the
previous MIAs, TEAR performs MIA at the model training
stage and uses the difference of the temporal evolution of the
adversarial robustness between the training and non-training
data. Therefore, the core idea of defending our MIA is
to reduce the difference between the training data and the
non-training data of the model during training process. The
possible defense against our MIA could be noise gradient and
adversarial training.

1) Noise Gradient: Adding noise to gradients is a common
defense strategy in FL. As for defending against TEAR, the
client can add well-designed noise to gradients before sending
them to FL server at every training round, and thus increasing
the distance to the decision boundary of the training data with
respect to the target model.

D. Adversarial Training

The original goal of adversarial training is to enhance the
robustness of models against the adversarial examples. As for
defending against TEAR, the FL server could involve the
adversarial training into the FL training process, and thus
increasing the adversarial robustness of the FL model with
respect to the training data.

With these possible defenses, the adversarial robustness of
the training data will be enhanced and thus the difference
to the non-training data would be reduced. This would increase
the difficulty for TEAR to perform MIA, thereby protecting
the data privacy of FL clients.

VII. RELATED WORK
A. MIA Against ML Models

Shokri et al. [35] first study MIA against ML models and
present the shadow training technique, which perhaps is the
most widely used attack paradigm in MIA field [63]. They
use a shadow dataset, which has the similar distribution with
the target model’s training data, to construct multiple shadow
models to mimic the prediction behavior of the target ML
model. Then they construct multiple inference models based
on the prediction of the shadow models, which can directly
determine the membership property of the target sample. Sub-
sequently, Salem et al. [38] present ML-Leaks and show that
it is possible to perform the same attack with only one shadow
model instead of multiple shadow models. Li et al. [39]
also leverage the shadow training technique and present an
instance-probability attack. They use the prediction of shadow
and testing data on the shadow models to select a threshold for
the probability of correct labels, which is then used to perform
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MIA. Truex et al. [64] demonstrate how shadow models can be
leveraged in adversarial ML and expose MIA vulnerabilities
through the perspectives of data skewness.

Except for leveraging the shadow training technique, many
researchers use other information of the target model to
perform MIA. A part of researchers find that the training
process of ML models is to fit the whole training data, which
may not generalize well on the testing data. As a consequence,
there will be a difference between the training and non-training
data with respect to prediction correctness [36], prediction
loss [37], and parameter gradient [17]. Then they treat these
information as the membership feature to perform MIA.
Furthermore, Hui et al. [65] exploit the prediction probability
distributions of the target model, and design a differential
comparison method with a synthetic dataset to attack against a
trained DNN model. Song and Mittal et al. [66] propose a new
metric called the privacy risk score, based on the modification
of prediction entropy. With this metric, they could identify
samples with high leakage risks of membership information.

More recently, a part of researchers are inspired by the
adversarial example studies [27], [67] and attempt to perform
MIA with the sample distance to decision boundary of ML
models. The intuition behind these works follows a general
observation that an ML model is more confident in predicting
its training data samples. Thus it requires a larger perturbation
to make the target model misclassify a member sample than
a non-member sample. Choquette et al. [25] and Li and
Zhang [26] make use of existing adversarial attacks, including
HopSkipJump attack [30] and C&W attack [29], to estimate
the sample distance to the decision boundary of the target
model. Then they infer the given sample as a member if the
distance is larger than a predefined threshold, and vice versa.
Recently, Del Grosso et al. [46] make use of Auto-Attack [47]
to generate the adversarial example for the target sample. Then
the distance between the target sample and its corresponding
adversarial example was then utilized to conduct MIAs.

We notice that, in parallel to our work, a recent work
T RAJECTORYMIA [48] also utilizes information during
the training process to conduct MIAs. The authors employ
knowledge distillation techniques to train a shadow model on
a supplementary dataset that has the same distribution as the
target model’s training data. They subsequently train an attack
model using the prediction loss trajectory of the auxiliary
dataset acquired during the shadow model’s training proce-
dure. Although both our work and T RAJECTORYMIA utilize
the discrepancy between training and testing data with respect
to the model during the training process, T RAJECTORYMIA
focuses solely on the prediction loss changes. In contrast,
we dive into the connection between the decision boundary
shift of the target model and the target sample with the training
process continues, which can offer a more detailed geometric
perspective for MIAs.

B. MIA Against FL Models

Like ML models, FL. models also confront the threat of
MIAs. Correspondingly, a part of researchers apply the shadow
training technique [35] to FL models, and analyze the privacy
leakage risk of the training data of FL models. Pustozerova et
al. [13] find that the membership information of the training
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data confront greater risk compared with the centralized ML
models. Mo et al. [68] perform MIAs on the well-trained FL.
model and its last layer’s outputs, and demonstrate that the FL.
model deployed in the mobile computing scenario still con-
fronts the risk of membership leakage. Since the training data
of each federated client are independent, Zhang et al. [14]
make use of generative adversarial network (GAN) to over-
come the lack of shadow data.

Since the training procedure of FL needs to exchange the
parameter updates or gradients, FL provides a new avenue for
MIAs. Nasr et al. [17] present a passive MIA by extracting
the membership information of the target samples from the
observed model updates. Pichler et al. [19] introduce a simple
MIA with a malicious central server which only relies on
a single training step. They observe the parameter changes
of two successive training rounds with respect to the target
sample, and then infer this sample’s membership property with
a threshold test. Then some researchers modify the FL updates
and present several active MIAs. Melis et al. [16] exploit
the fact that SGD optimization updates model parameters in
the direction of minimizing the training loss and present the
gradient ascent attack. They reverse the direction of model
updates with respect to the target sample, and force the FL
model to reveal more information about the target sample.
Xu et al. [18] propose an MIA for conspired malicious clients
to adjust their private training data strategically, so that a
certain parameter of the FL model can form meaningful
signals of a pattern’s appearance. Yuan et al. [69] analyze
the membership risks for federated recommender systems and
aim to infer target client’s interacted item set by observing the
target client’s parameter updates.

Zari et al. [15] propose a simple MIA by leveraging the
observation that the temporal evolutions of scores of the true
labels for members and non-members of training data are
distinguishable. Correspondingly, they collect the prediction
scores of a dataset which contains both training and testing
samples during the FL training process, and construct a binary
attack model with the collected predictions. Given a target
sample, they can directly determine the membership property
with the attack model.

It is observed that the most MIAs in FL require the access to
the parameter updates and even the modification of the training
process of the FL model. However, in practice, the model
parameters and gradients are usually encrypted and the train-
ing process is executed with a secure environment. Against
this background, we consider a most restricted scenario and
present a practical MIA, that merely requires the access to the
prediction labels of the target model, in which most if not all
existing FL. MIAs would fails since it is almost impossible to
obtain the necessary information about the target model, not
to mention manipulating the training process.

VIII. CONCLUSION

In this paper, we have presented TEAR, a novel MIA against
FL models by exploring the temporal evolution of adversarial
robustness between the training and non-training data. TEAR
requires neither the modification of the standard FL training
process nor the access to the FL model’s parameters and
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gradients. Experiments on five realistic datasets demonstrate
that TEAR can achieve better attacking performance compared
with existing MIAs, and also bypass two classic MIA defenses.
We envision our work as a solid step in FL towards revealing
privacy leakage risks of the training data during the model
training stage and shed light on designing more effective
defense mechanisms against MIAs in FL systems.
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