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Abstract—Point-of-interest (POI) recommendation service has drawn growing attention with the widespread popularity of location-

based social networks (LBSNs). Recent research methods on POI recommendation based on graph embedding have mainly focused

on explicit interactions of LBSN objects such as user’s check-ins on POIs and social relationships, while neglecting implicit relationship

that cannot be directly observed but may notably contribute to the POI recommendation. This paper presents VirHpoi, a heterogeneous

hypergraph embedding method for POI recommendation in LBSNs with three original contributions. First, we model the LBSNs as a

hypergraph to capture the complex interactions in LBSNs and learn the hypergraph by preserving homophily and interaction attribute

affinity of the LBSNs. Second, we introduce the notion of “virtual hyperedges” to capture the intrinsic correlations of POIs. Virtual

hyperedges incorporate implicit yet informative connections of the check-in patterns in LBSNs in terms of geographical and semantic

characteristics. Third, we propose techniques to learn heterogenous hypergraph embedding on the complex LBSN graph with both

homogenous edges and heterogenous hyperedges with dual objectives: we aim to preserve the homophily of objects intra domain by

maximizing the co-occurrence probability of all homogenous edges, and we want to learn the interaction attribute affinity across

domains by maximizing the probability of predicting the target object in the hyperedges. As a result, our approach can preserve both the

intra domain homophily of objects and the interaction attribute affinity across domains by learning low-dimensional embeddings of

LBSN objects and then make more effective recommendations based on the embeddings. Extensive experiments on four real-world

datasets show the effectiveness and superiority of VirHpoi compared with the state-of-the-art methods.

Index Terms—Graph embedding, heterogeneous hypergraph, location-based social networks, POI recommendation

Ç

1 INTRODUCTION

LOCATION-BASED social networks (LBSNs) [1], [2], [3] con-
tinue to receive growing attention with the popularity of

smartmobile devices and the advancement of location acqui-
sition technologies. Millions of users engage in LBSN serv-
ices like Facebook, Foursquare, to name a few. In order to
improve service experience for users, the point-of-interest
(POI) recommendation service [4], [5], [6] which aims to

recommend new and potentially attractive POIs to users has
gained great research interest, as it can benefit not only users,
but also advertising agencies for effective advertisements.

Studies on POI recommendation mainly consider four
influencing factors: geographical influence, social relations,
temporal dynamics and activity categories. Early works
usually consider these factors separately, and combine their
corresponding results together to perform recommenda-
tion [7], [8], [9], [10]. Recent advances of representation
learning in networks (a.k.a. graph embedding) provide an
opportunity to exploit and integrate these influencing fac-
tors [11], [12], [13], by modeling the LBSNs as a graph and
embedding each node of the network into a low-dimen-
sional latent space while preserving the key topological
information.

While most of existing graph embedding works [14], [15],
[16] model the LBSNs as several relational bipartite graphs
or regard the LBSNs as a graph with only pair-wise connec-
tions (c.f. Fig. 1a), LBSNs are inherently heterogenous which
have various types of relations and objects including users,
POIs, categories and time slots. Therefore, simplifying the
essential tuple-wise relationship into pair-wise one cannot
fully capture the information from the check-ins, and may
degrade the joint interactions of all objects from four
domains in a check-in record into the interactions of several
pair-wise objects, which will inevitably lead to the loss of
structure information [17], [18].
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To rectify such drawbacks, recent works [19], [20]
propose to adopt the hypergraph to better describe the
tuple-wise relationship, where check-ins are modeled as
hyperedges and friendships are modeled as classical edges.
In their designs, however, they only concentrate on explicit
check-ins and friendships, while neglecting implicit rela-
tionships that cannot be directly observed but may notably
contribute to the recommendation. In particular, there are
classical edges in social domain and hyperedges linking
four nodes, one from each domain, but no direct connection
exists in other domains. In practice, there often exists corre-
lation between POIs and they are not completely indepen-
dent. For example, a classroom is more related to a library
than a gym. Some POIs may be of different categories, but
they have correlations and similar appeals to users. There-
fore, the correlations of POIs are much useful for recom-
mendation tasks and should be taken into consideration.
The existing works only concentrate on explicit interaction
links. We aim to leverage these enriched correlations for
improving new POI recommendation.

In this paper, we address the above problems by develop-
ing a novel heterogeneous hypergraph embedding method
for POI recommendation in LBSNs, coined as VirHpoi. Our
key idea is to model the LBSNs as a heterogenous hyper-
graph and introduce the notion of the “virtual hyperedges”
to incorporate implicit yet informative connections of the
LBSNs. Intuitively, users are more likely to check in on new
POIs that have a higher degree of relationship with their pre-
viously visited POIs, and new POI recommendation would
benefit from the embeddings of POIs with high correlations.
Moreover, the virtual connections are conducive to shorten
the distance between users and potentially appealing but
unvisited POIs and thus help make more precise recommen-
dation. Besides, the graph based methods are potentially
more vulnerable to data sparsity. The virtual connections
will help deal with the data sparsity issue to an extent.

Although the idea sounds simple, there are two technical
challenges to be addressed. The first challenge is how to
make effective virtual connections, which plays an

important role in improving the performance of the POI rec-
ommendation. To tackle this issue, we analyze and reveal
the check-in patterns in terms of geographical and semantic
characters using real-world data, and further propose two
kinds of similarity metrics to quantify the corresponding
two factors, based on which we can perform valid virtual
connections. The constructed virtual hyperedges contain
multiple objects which have implicit relatedness. They are
in fact potential neighbors that may not be directly reach-
able on graphs. The second challenge is how to learn the
heterogenous hypergraph graph embedding on such com-
plex graph with both homogenous edges and heterogenous
hyperedges. To cope with this problem, we maximize the
co-occurrence probability of all homogenous edges to pre-
serve the homophily of objects intra domain, and learn the
interaction attribute affinity across domains by maximizing
the probability of predicting the target object in the hyper-
edges. As such, we can preserve interaction information of
the LBSNs by learning low-dimensional embeddings of the
objects and then conduct effective POI recommendations.

Our major contributions are summarized as follows:

� We propose a heterogenous hypergraph embedding
based POI recommendation method, which models
the LBSNs as a hypergraph to capture the complex
interactions in the LBSNs and learns the hypergraph
by preserving homophily and interaction attribute
affinity of the LBSNs.

� We incorporate implicit connections of POIs by
establishing virtual hyperedges in the LBSN heterog-
enous hypergraph, which enables more efficient
embedding from latent geographical and semantic
characters in the LBSN hypergraph.

� We conduct extensive experiments to evaluate the
performance of VirHpoi on four real-world datasets.
The results show the effectiveness and superiority of
VirHpoi compared with the state-of-the-art methods.

We should emphasize that our virtual hyperedges are
not limited to the POI domain. In other domains, such as

Fig. 1. (a) The LBSNs are modeled as bipartite graphs or heterogenous graphs with only pair-wise connections, where the joint interactions of all
objects from four domains (user-time-POI-category) in a check-in record are degraded into the interactions of several pair-wise objects. (b) We model
the LBSNs as a heterogenous hypergraph and introduce virtual hyperedges (clusters containing multiple objects) to incorporate implicit relationships
in the LBSNs. Friendships are represented by classical edges (black lines) linking two users, while check-ins are modeled as hyperedges (colored
thick line) linking four nodes, one from each domain. (c) We learn heterogenous hypergraph embedding by preserving both the homophily of objects
intra domain and the interaction attribute affinity across domains. (d) Top-k unvisited POIs are recommended to each user based on the heteroge-
nous hypergraph embeddings.
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user or category domain, we can also design appropriate
metrics to establish virtual hyperedges, so as to incorporate
more implicit correlations which introduce latent patterns
of objects in the LBSNs to recommendation model and fur-
ther improve the recommendation performance.

The remainder of this paper is organized as follows. In
Section 2, we analyze the geographical and semantic charac-
ters of the LBSNs for better establishing virtual connections.
Section 3 details the design of the heterogenous hypergraph
embedding. We report our experiment results in Section 4.
Section 5 reviews some related works, and finally Section 6
concludes the paper. The code of VirHpoi has been released
for reproducibility purposes1.

2 EMPIRICAL DATA ANALYSIS

In this section, we conduct an empirical data analysis to
reveal check-in patterns of the LBSNs in terms of geographi-
cal and semantic factors for incorporating implicit relation-
ships in the hypergraph embedding, using the global-scale
check-in data collected in [21], [22] from Foursquare
between Apr. 2012 and Jan. 2014. In our analysis, we take
cities as basic units and select four different datasets with
large numbers of check-ins from the raw check-ins: New
York City (NYC), Tokyo (TKY), Istanbul (IST) and Jakarta
(JK). Each check-in record contains a user, a POI, and a cor-
responding timestamp; descriptive information of POIs
such as longitude, latitude and categories are also available.
Each dataset also contains a snapshot of socially connected
friendship. Following previous work [16], we select users
who have check-ins at least 5 times and POIs with more
than 10 visitors to avoid very inactive users and POIs. The
detail statistics of the datasets are shown in Table 1.

2.1 Geographical Characters of the LBSNs

Geography is an important factor that distinguishes POI
recommendation from traditional item recommendation, as
the check-in behavior is closely related to locations geo-
graphical features. Intuitively, people tend to visit neighbor-
ing POIs subject to geographical constraints. We can infer
that the influence of geographical adjacent on user check-
ins follows a certain pattern, which can be utilized for POI
recommendation. We perform a spatial analysis on the four
datasets by measuring the likelihood that two of a user’s
check-ins are within a given distance. Specifically, to obtain
the likelihood, we calculate the geographical distances
between all pairs of check-ins by the same user and plot a
histogram to show the statistics.

Fig. 2 shows the results of geographical influence on
check-ins on the four datasets. From the results, we can
observe an obvious geographical clustering phenomenon.
As the distance between two POIs increases, the probability
of a user checking in from one POI to another decreases.
Comparing to distant places, users are more inclined to visit
closer POIs or POIs near those already being visited.

Considering the data characteristics, we propose to
employ the power-law distribution to model the geographi-
cal influence of the user’s check-in behavior on POIs [23]. It
can be observed from Fig. 2, however, that the check-in
probability of POIs visited by the same user over distance is
not a standard power-law distribution. That is because our
datasets include POIs within the city range, and the geo-
graphical range is not very large. Therefore, unlike existing
works [24], [25], [26] which usually directly use power-law
distribution to fit all check-ins of a platform, we test it on
city-scale large datasets and design a piece-wise function
according to the tendency in our results, which is formu-
lated as follows:

fgðpn; pmÞ ¼
a1 � dðpn; pmÞb1 0 < dðpn; pmÞ < d1

a2 � dðpn; pmÞb2 d1 � dðpn; pmÞ < d2

a3 � dðpn; pmÞb3 d2 � dðpn; pmÞ

8
><

>:
(1)

where ai, bi and di are parameters to be learned, and
dðpn; pmÞ refers to the physical distance between POI pn and
pm. Physical distances less than 0.01 km are treated as
0.01 km. fgðpn; pmÞ represents the calculated probability of a
user checking in from pn to pm. From the decreasing curve
in Fig. 2, we can infer that the calculated parameter b < 0.
So, when dðpn; pmÞ is small enough, the calculated fgðpn; pmÞ
may vary in a large scale.

The probability fgðpn; pmÞ that a user checks in from one
POI to another can be used to quantify the geographical
similarity of POIs. For our POI recommendation task, if a

TABLE 1
Statistic of Datasets

Dataset #Users #POIs #Check-ins #Friendships

New York 12,062 11,422 443,284 14,346
Tokyo 14,441 16,265 1,311,614 40,252
Istanbul 16,925 12,780 650,451 2,466
Jakarta 11,407 11,184 502,540 14,998

Fig. 2. Geographical influence probability distribution on four datasets.
Our piece-wise function can fit the city-scale large datasets better.

1. https://www.dropbox.com/s/ey79crqa0xrdg8l/VirHpoi-Code.
zip?dl¼0
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user is more likely to check in from one POI to another
within a certain distance, the geographical similarity
between the two POIs is higher. So we describe the geo-
graphical similarity of POIs using

simgðpn; pmÞ ¼ fgðpn; pmÞ: (2)

In this way, we convert the calculation of the geographi-
cal similarity of POIs into calculating the probability of the
user’s checking in from one POI to another within a certain
distance.

2.2 Semantic Characters of the LBSNs

Different POIs have their own characteristics and the rela-
tionship of POIs cannot be well explained only by their
physical distance, so we further explore the semantic char-
acters of the LBSNs. The semantic character here refers to
the check-in distribution followed by POIs, and we consider
it in terms of check-in traffic distribution. On the one hand,
the check-in traffic distribution is related to the property of
POIs. POIs with similar property often have similar appeals
for users. In this case, we are not confined to the categories
of POIs, and POIs of different categories may be semanti-
cally similar. On the other hand, most of users’ daily sched-
ules often remain stable. POIs with high check-in traffic
distribution similarity with user daily activity are more in
line with users’ check-in habits, so users are more likely to
check in on POIs with similar check-in traffic distributions.

To measure the semantic similarity between POIs, a
straightforward way is to compare all historical check-in
traffic distribution of each POI. However, the time range for
all check-ins is too large and the data is highly sparse, while
both the user behavior and the check-in traffic pattern show
periodicity. As such, we study the traffic distribution of
users’ check-in on a weekly basis. Note that different from
existing works [27], [28] which focus on calculating the
probability of user check-in on one POI at a specific time,
we here pay more attention to the check-in time patterns
from the perspective of POIs, instead of users, and compare
POI similarity distribution by the patterns to illustrate the
rationality of using check-in traffic distribution to compare
POIs.

In particular, we model the check-in data by representing
each POI as a 168-dimensional vectors, where 168 is the
weekly time units (168 time slots for 168 hours of a week),
and each element denotes the probability of check-ins on
the POI. Formally, the check-in traffic information for each
POI pn is denoted as a vector fn ¼ ½fð1Þ. . .fðiÞ. . .fð168Þ�,

where fðiÞ denotes the frequency of check-ins. The semantic
similarity between two POIs pn and pm can be calculated by
comparing check-in traffic distribution using the cosine sim-
ilarity of the vectors

simfðfn; fmÞ ¼
fn � fm

kfnkkfmk
: (3)

Fig. 3 gives three typical examples of weekly traffic pat-
tern for specific POIs. It can be observed that different POIs
have different traffic patterns. We next measure the seman-
tic similarity by Eq. (3) of these three POIs, and find that the
semantic similarity of Sandwish Place and Sports Bar is
0.2489, while that of the Sandwish Place and French Restau-
rant is 0.4562. Intuitively, the correlation of Sandwish Place
and French Restaurant is higher, and they should be embed-
ded more closely. This is consistent with our life experience,
as they are all about food and the semantic similarity of
them should be higher, which demonstrates the practical
rationality of using check-in traffic distribution to describe
the semantic feature of LBSN check-ins.

Fig. 4 further shows the statistics of check-in semantic
similarity of different POIs. It can be observed that almost
all POI pairs’ semantic similarity are between 0 and 0.15
and there is nearly no identical check-in traffic distribution
of POIs. This indicates that there are distinct differences
between different POIs in semantic similarity and we can
thus distinguish different POIs by their semantic characters.

3 VIRHPOI DESIGN

3.1 Problem Formation

Before we formulate our problem, we first present some
notations and definitions. Formally, let U ¼ fu1; u2; . . .g be
the set of users, P ¼ fp1; p2; . . .g be the set of POIs, and C ¼
fc1; c2; . . .g be the set of categories where ci denotes the cate-
gory for pi. Each POI pi has a location lj ¼ flonj; latjg

Fig. 3. Weekly check-in traffic pattern of three typical POIs (168 hours in a week).

Fig. 4. Distribution of check-in semantic similarity of POIs.
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representing its longitude and latitude. When a user ini-
tiates a check-in on a POI pi, an interaction is formed. The
user check-in time is discrete and the time slot set is denoted
as T ¼ ft1; t2; . . .g. Then our LBSN hypergraph with virtual
hyperedges is defined as follows.

Definition 1 (Friendship Edge). A friendship edge is defined
as ef ¼< u1; u2 > where users u1 and u2 are friends. Ef is
the set of friendship edges.

Definition 2 (Check-in Hyperedge). A check-in record is
defined as a four tuple ec ¼< u1; t1; p1; c1 > that depicts a
user u1 visiting POI p1 at time t1 and the category of p1 is c1.
The tuple is regarded as a hyperedge which connects four differ-
ent kinds of objects simultaneously. Ec is the set of check-in
hyperedges.

Definition 3 (LBSN Hypergraph [19]). The friendship edges
and check-in hyperedges actually form a heterogeneous hyper-
graph G ¼ ðV; Ef ; EcÞ where V ¼ U [ T [ P [ C consists of
four data domains, i.e., user, temporal, POI and category.

Definition 4 (Virtual Hyperedge). A virtual hyperedge is
defined as ev ¼< p1v; p

2
v; . . . p

L
v > , where p1v . . . p

L
v are POIs

with implicit correlation; L represents the number of POIs in
the hyperedge ev. Ev is the set of virtual hyperedges. A larger L
means more new POIs accessible by hyperedges as well as more
historical check-ins for each user.

Definition 5 (LBSN Hypergraph with Virtual Hyper-
edge). The constructed LBSN hypergraph with virtual hyper-
edges is defined as G ¼ ðV; Ef ; Ec; EvÞ which includes both
explicit relationship reflected by LBSN hypergraph and implicit
relationship reflected by virtual hyperedges. The LBSN hyper-
graph includes both homogenous edges within user and POI
domains and heterogeneous hyperedges across all the four
domains.

We can then formulate our problem as follows: Given a
user u and his historical check-in records Pu and socially
connected friendship, VirHpoi aims to recommend top-k
unvisited POIs Pu

rec ¼ fp1; p2. . .; pk 2 PnPug that u might be
interested in, while maximizing the preservation of explicit
and implicit relationships of the LBSNs by heterogenous
hypergraph embedding. To this end, VirHpoi mainly
involves two modules for POI recommendation: (1) Hyper-
graph construction, which incorporates implicit relationship
of the LBSNs by establishing virtual hyperedges; and (2)
Hypergraph embedding, which learns embeddings of the
objects in the LBSNs based on the constructed heteroge-
neous hypergraph, by preserving homophily and interac-
tion attribute affinity of the LBSNs.

3.2 Hypergraph Construction

We first make virtual connections synthetically considering
both geographical and semantic characters of the LBSN and
then construct the complete heterogenous hypergraph
which is used for the hypergraph embedding.

3.2.1 Virtual Connections

We incorporate implicit relationships of the LBSNs by estab-
lishing virtual hyperedges based on the aforementioned geo-
graphical and semantic factors. A hyper-parameter a is used

to balance the impacts of the geographical and semantic fac-
tors as follows:

simðpn; pmÞ ¼ a � simgðpn; pmÞ þ ð1� aÞ � simfðfn; fmÞ; (4)

where simgðpn; pmÞ and simfðfn; fmÞ denote the geographi-
cal similarity and semantic similarity, and can be obtained
using Eqs. (2) and (3), respectively. Apparently, a small
value of a gives less importance on the geographical fea-
tures and more on semantic factors, and vice versa.

It is noticed that, there is a numerical range gap between
the geographical similarity and the semantic similarity.
Recall that the range of the semantic similarity is between 0
and 1, but the range of the geographical similarity is larger
than that of the semantic similarity. The calculated final sim-
ilarity will be dominated by the geographic similarity.
Therefore, it is necessary to normalize the geographical sim-
ilarity. The number of POI pairs to be selected for virtual
connections is limited, so we consider more about the first b
POI pairs for normalization. The selection of b is actually
related to the general activity scope of users, and a larger b
means more distant POIs from user current position will
be considered, which is related to the boundary of the
user possible daily activities. Although users may be
more likely to check in on farther POIs, after more than
a certain distance, users focus more on the semantic fea-
tures of the POIs, and geography is no longer the pri-
mary factor.

On this basis, we set the midpoint of normalization as
simb

g and we use simb=2
g � simb

g to adjust the range of
simgðpn; pmÞ, avoiding most of the data concentration in
high-value. After adjusting the midpoint and scaling, we
use 1

1þe�x to normalize the data, where x describes the proc-
essed similarity. The final similarity formula can thus be cal-
culated as follows:

simðpn; pmÞ ¼a � 1

1þ e
�
simgðpn;pmÞ�sim

b
g

sim
b=2
g �sim

b
g

þ ð1� aÞ � simfðfn; fmÞ; (5)

where simb
g and simb=2

g are the value of the top bth and the
top b=2th geographical similarity, respectively.

With the similarities of all POI pairs based on Eq. (5), we
can make virtual hyperedges for POIs with implicit
correlations.

3.2.2 Hypergraph Construction

In order to obtain the virtual hyperedges, we use clustering
to construct hyperedges with multiple POIs, and the clus-
ters are regarded as hyperedges. We obtain POI clusters by
borrowing the idea of hierarchical agglomerative clustering
method [29]. The clustering starts from the partition of the
data set into singleton object, each of which forms a cluster.
Then, the clusters are merged step by step according to the
distance between clusters (i.e., the distance between the
nearest two POIs of the two clusters and can be calculated
by Eq. (5)). Different from the original clustering, we merge
the current closest POI into the set and stop until the set
reaches the specific numbers so as to ensure that each vir-
tual hyperedge has a fixed number of POIs. Specially, when
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each virtual hyperedge contains only two POIs, we can also
construct virtual hyperedges by linking most similar POI
pairs (top 1% in our experiments considering the number of
POIs and the density of virtual hyperedges).

Incorporating all explicit and implicit relationships, we
can then construct the LBSN hypergraph G ¼ ðV; Ef ; Ec; EvÞ
consisting of users, time slots, POIs and categories. The con-
structed heterogeneous hypergraph contains objects from
four domains and three kinds of edges. In the social
domain, the friendships are about preserving user interac-
tions. In the POI domain, the virtual hyperedges are about
preserving implicit relationships in the LBSNs. Considering
the efficiency issue, we only construct one type of virtual
hyperedge. As the collected check-in time is continuous, we
need to transform the continuous data into discrete ones.
We define the time granularity as 168 hours for a week and
each check-in is associated with a specific time slot. With
users, time slots, POIs and categories of POIs, we model
check-ins as hyperedges, which are about preserving inter-
action attribute relations of four kinds of objects across all
domains. We next learn embeddings of objects in the LBSNs
based on the constructed heterogeneous hypergraph.

3.3 Hypergraph Embedding

The constructed LBSN hypergraph is highly heterogeneous
consisting of four types of objects and containing both het-
erogeneous hyperedges and homogenous edges. Graph
embedding for such heterogeneous hypergraph is challeng-
ing. Here, we design a novel embedding model preserving
both homophily and interaction attribute affinity of the
LBSN hypergraph. To learn the hypergraph, we first ran-
domly sample virtual hyperedges and friendship edges
from POI domain and user domain to learn the homophily.
After preserving the homophily of each domain, we sample
check-in hyperedges for learning the interaction attribute
affinity of objects from different domains. Note that the
number of virtual hyperedges and friendship edges we
select are proportional to the number of check-in hyper-
edges by the ratio g.

3.3.1 Homophily Preserving

Homophily in networks refers to the property that intercon-
nected nodes are tend to be similar [30]. Normally, some of
the features of the connected nodes are very similar. For
example, in our constructed heterogeneous hypergraph,
interconnected user nodes may tend to have similar hobbies
or have the same gender, etc., and interconnected POI nodes
have highly implicit correlations. The distance in the
embedding latent space indicates the proximity between
two nodes, and the connected nodes should be embedded
closely. It is therefore necessary to preserve homophily of
the heterogeneous hypergraph while embedding.

We preserve homophily of the LBSNs by learning edges
that connect LBSN objects of the same type. To be more con-
crete, given an LBSN heterogeneous hypergraph G ¼
ðV; Ef ; Ec; EvÞ, we preserve the proximity of POIs and users
by learning these edges, where multiple objects in a virtual
hyperedge are of the same type. So, virtual hyperedges are
decomposed into pairwise homogenous edges for learning.
We learn low-dimensional embeddings of LBSN objects and

preserve the homophily by maximizing the co-occurrence
probability of all homogenous edges. The objective function
for calculating the log-probability is as follows:

Q1 ¼ argmax
X

ðvi;vjÞ2E
logPrðvj

��viÞ; (6)

where E is the homogenous edge set including edge set Ef

or Ev. Nodes vi and vj connected by a homogenous edge are
of the same type denoting users or POIs. Prðvj

��viÞ is the con-
ditional probability that node vi connects vj.

For a given node vi, the conditional probability Prðvj
��viÞ

of connecting vj is computed as follows:

Prðvj
��viÞ ¼

expðSvj;viÞP
ðv0

i
;vjÞ2E expðSvj;v

0
i
Þ ; (7)

where Svj;vi is a scoring function defined as Svj;vi ¼ ~vi
T � ~vj; it

reflects the proximity between nodes vi and vj. ~vi 2 R1�D

and ~vj 2 R1�D are respectively the embeddings of vi and vj.
D is the dimensionality of the latent space.

3.3.2 Interaction Attribute Learning

The check-in hyperedges in the LBSNs reflect the interaction
attribute relation of LBSN objects from different domains.
Each object in the LBSNs is connected to many check-in
hyperedges including four different types of objects, and a
hyperedge can actually be regarded as a set of nodes (c.f.
the hyperedge linking user, time slot, POI and category
with the colored thick line in Fig. 1c). The interaction attri-
bute of a specific object in a hyperedge can be reflected by
its interaction with other objects of the same hyperedge. We
call the specific object as the target object. That is to say,
knowing all other nodes in the hyperedge, we can learn the
interaction attribute of the target object by learning these
hyperedges. For example, when a POI is regarded as the tar-
get object in a check-in hyperedge, the attribute of this POI
object can be reflected by the interaction with specific user
object, time slot object and category object in the hyperedge.
We thus alternate the object in hyperedges as the target
object to learn the hyperedge.

Specifically, the process of learning hyperedges is to
maximize the likelihood of predicting the target object
when knowing other interaction objects. The users’ prefer-
ences are evolving from time to time, so we sample check-in
records according to time evolution with the probability as
follows:

PrðtÞ ¼ exp
�ðt0 � tÞ

T
; (8)

where T is the time range for all selected data, t0 and t are
respectively the latest check-in time and the time of check-
in record. According to Eq. (8), more recent check-in hyper-
edges have more chance to be sampled.

After sampling the check-in hyperedges, we can learn all
interactions to preserve the interaction attribute affinity of
the target node as follows:

Q2 ¼ argmax
Y

ec2Ec
½
Y

vj2ec

Y

vi2Ecnvj

Prðvj
��viÞ�; (9)
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where vj denotes the predicted target node, ec is the hyper-
edge which preserves interaction relation of check-in
record, and Ec is the check-in hyperedge set. Considering
the heterogeneity of check-in hyperedges, the importance of
different objects to a check-in record varies; therefore we set
a hyper-parameter wi to control the impact of objects from
different domains on the prediction. We also apply log-like-
lihood transformation and then Q2 is turned into

Q2 ¼ argmax
X

ec2Ec
½
X

vj2ec

X

vi2Ecnvj

wilogPrðvj
��viÞ�; (10)

where wi describes the weight of one type of object for a
hyperedge. Users and POIs play an important role in check-
in activities, so we set wi ¼ 1 for user, POI and category
objects in a check-in hyperedge. Since the daily activities of
users are regular, users have their preference for certain
time slots to check-in and the time slots vary. We set wi ¼
TeP
Ti

for time slot objects where Te is the number of times
that the user checks in at a specific time and

P
Ti is the total

number of user historical checked-ins. wi is related to both
the user and the time slot, and it is different when the
selected hyperedge includes different users or time slots.

Finally, we combine the homophily preserving and inter-
action attribute learning. The final objective function of our
embedding model is

Qemb ¼ Q1 þQ2: (11)

We maximize the final objective function Qemb when learn
the embeddings of the LBSNs.

3.3.3 Model Optimization

We notice that it is computationally expensive to optimize
the objective functions Q1 and Q2, as calculating the condi-
tional probability Prðvj

��viÞ needs to sum over the entire set
of nodes. We thus adopt a speed up method which is similar
to the negative sampling proposed in [31] to reduce the
computation cost. Specifically, given a positive edge ðvi; vjÞ,
several negative edges are sampled according to a specific
noise distribution. We can rewrite the objective functions as

Q1 ¼ argmax
X

ðvi;vjÞ2E
½log sðSvj;viÞ

�
X

vn2Eneg
Evn�PnðvÞlog sð�Svj;vnÞ� (12)

Q2 ¼ argmax
X

e2Ec
½
X

vj2e

X

vi2Ecnvj

wi½log sðSvj;viÞ

�
X

vn2Eneg
Evn�PnðvÞlog sð�Svj;vnÞ�� (13)

where Eneg is the negative sample edge set, PnðvÞ / d3=4v and
dv is the degree of node v. Note that we sample homogenous
edges as negative samples for Q1 from the same domain as
the learned edges and we sample hyperedges as negative
samples for Q2. To learn the hypergraph embedding, we
then use an alternate iterative update procedure and
employ the widely used stochastic gradient descent (SGD)
technique to optimize the objective functions.

3.4 POI Recommendation

After we train our model and learn the embeddings for
users ~u, time slots~t, POIs~p and categories~c, we can perform
new POI recommendation using simple operation on
embeddings. The learnt embeddings preserve both explicit
interactions and implicit relationships information and so
we can capture the user preference to POIs from these
embeddings. In particular, given a user u, we rank all the
unvisited POIs by the score function Sðp

��uÞ that reflects the
user preference to POIs as follows:

Sðp
��uÞ ¼ ~pT �~u; (14)

where ~u and~p are embeddings for user u and POI p, respec-
tively. Each unvisited POI is assigned a score for the given
user u by Eq. (14). Finally, we select POIs with top-k highest
scores to form the final recommendation list.

4 PERFORMANCE EVALUATION

4.1 Experiment Setup

4.1.1 Datasets

We utilize the global-scale check-in data collected in [21],
[22] from Foursquare for evaluation, which is widely used
in recent works [19], [20], [32], [33]. The preprocessing and
statistics of the datasets are described in Section 2 and
Table 1. To implement POI recommendation tasks, for each
user, we chronologically split the check-in data into three
parts, the first 70% for training, the remaining 20% for test-
ing, and the last 10% as the tuning data.

4.1.2 Evaluation Metrics

We use two standard recommendation evaluation metrics
including Precision (Pre@k) and Recall (Rec@k) to evaluate
the performance

Pre@k ¼ 1

Uj j
X

u2U

Pu
rec \ Pu

�� ��
Pu

rec

�� �� (15)

Rec@k ¼ 1

Uj j
X

u2U

Pu
rec \ Pu

�� ��
Puj j (16)

where Pu
rec is the set of top-k unvisited POIs in the recom-

mendation list for user u, and Pu is the set of actually visited
new POIs of u (i.e., the ground truth).

Here, Pre@k w.r.t. each user indicates how many POIs in
the top-k recommended POIs correspond to the hold-off
POIs in the testing data, while Rec@k w.r.t. each user indi-
cates how many recommended POIs have been visited by
the user. Considering the practical effect of recommenda-
tion tasks where the value of k is normally not quite huge,
we thus experiment and report the performance for
k ¼ f3; 5; 10; 20g.

4.1.3 Baselines

We compare VirHpoi with the following state-of-the-art
methods:

� LINE [34]. LINE adopts a large-scale network
embedding model which preserves both the first-
order and the second-order proximities, and thus
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can describe both the local pairwise proximity
between two nodes and the similarity between node
pair neighborhood.

� DeepWalk [30]. DeepWalk is a classical network
embedding method, which uses the skip-gram
model to learn d-dimensional feature representations
based on the node sequence sampled by truncated
random walks.

� GE [13]. GE jointly captures multiple effects by
embedding four relational bipartite graphs (i.e., POI-
POI, POI-time, POI-region, and POI-activity) into a
shared low dimensional space, before conducting
real-time POI recommendation.

� LBSN2vec [19], [20]. LBSN2vec employs a random-
walk-with-stay scheme to sample user check-in
hyperedges and social relationships together, and
preserve n-wise node proximity by maximizing the
similarity between nodes and their best-fit-line
under cosine similarity.

� LSTPM [35]. LSTPM models user check-ins as multi-
ple trajectories. Based on the trajectories, LSTPM
facilitates the modeling of users’ long- and short-
term preference. The long-term preference is usually
stable, while the short-term preference tends to
change frequently over time.

While LINE and DeepWalk are two well-known graph
embedding methods, GE, LBSN2vec and LSTPM are espe-
cially designed for LBSNs.

We also compare VirHpoi with its variant VirHpoi-
NoV, in which we remove all the virtual connections, to
further validate the benefits brought by the virtual
hyperedges.

4.1.4 Experiment Settings

For all baselines, the parameter settings are initialized the
same as reported in their original works. For LINE and
DeepWalk, we break each of our hyperedges into multiple
classic edges for fair comparisons, as they are designed for
classical edges and cannot performed for learning hyper-
edges. In our experiments, the dimension of the graph
embedding is set to 150 and the learning rate is set to 0.001.

4.2 Performance of POI Recommendation

We first evaluate the recommendation effectiveness and
present the results of VirHpoi, which makes virtual hyper-
edges connecting two POIs by selecting top 1% POI pairs,
along with the baselines with well tuned parameters. Fig. 5
shows the results using four datasets in terms of Pre@k and
Rec@k. From the results, we can see that VirHpoi consis-
tently outperforms other methods on all datasets.

First, we compare our model with two graph embedding
methods, DeepWalk and LINE. As excepted, VirHpoi out-
performs DeepWalk and LINE greatly. These two universal
graph embedding models perform worse since they only
concentrate on explicit interactions and ignore particular
features like the geographical character of the LBSNs. Fur-
thermore, they regard all the objects in the LBSNs equally
as one type and take little count to the heterogenity struc-
ture. In contrast, in VirHpoi we regard check-ins as hyper-
edges to capture complex spatial-temporal interaction and
preserve more side information, thereby obtaining better
performance.

Second, comparedwith other two garph embeddingmod-
els especially designed for LBSNs, i.e., GE and LBSN2vec,
VirHpoi also presents its advantage. For example, in terms
of Pre@10, the improvements of VirHpoi are 45.74% and
38.48%, respectively, on IST and JK dataset, indicating the
benefits we can obtain by incorporating virtual connections
and preserving both homophily and interaction attribute
affinity of the LBSNs. VirHpoi-NoV which removes the vir-
tual hyperedges also verifies the effectiveness of preserving
both homophily and interaction attribute affinity of LBSNs.
LBSN2vec performs classical random walk on user domain
based on their friendships, and stays on each encountered
user node to sample a set of hyperedges. LBSN2vec only per-
forms random walk on user domain without hyperedges, so
the sample for check-in hyperedges is highly related to
friendships. However, the friendships of most users are very
limited and their check-ins are not adequately sampled,
which is the main reason for less effectiveness than other
baselines. Besides, LSBN2vec concentrates on friendships
and check-in interactions and ignores side information like
geographical information. GE embeds several influences of
POI recommendation and exploits more side information.

Fig. 5. Recommendation performance on the four datasets.
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Therefore, GE performs well. However, GE dose not model
user object in graph and computes the user embeddings
based on more recently visited histories. Since most users
have few check-in records, computing the user embedding
in this waymay fail to capture personal preferences. Besides,
GE only learns user embeddings from POI embeddings and
ignores the informative friendships of user objects, which
makes it not that effective than ourmethods.

Third, we compare VirHpoi with LSTPM, which consid-
ers both long- and short-term preference for POI recommen-
dation. LSTPM shows better performance comparing with
other baselines, mainly due to the consideration of long-
term preference and adjusting their influence for new POIs
recommendation by short-term preference. New POI rec-
ommendations are often related to users’ stable preference,
so LSTPM can achieve better results than other baselines.
However, LSTPM only considers the explicit check-in
sequence of LBSNs. The advantage of our model is that
VirHpoi includes more interaction information than
LSTPM. VirHpoi can preserve the implicit connections in
LBSNs, which makes some new POIs reachable. The results
of GE and VirHpoi also show the effectiveness of learning
LBSN interactions by modeling LBSNs as a graph.

To explore the benefits of incorporating the virtual link-
age, we compare the performance of VirHpoi with VirHpoi-
NoV that removes the virtual hyperedges. The results show
that the performance of VirHpoi significantly increases in
all datasets and at most 9.63% on top-3 when virtual connec-
tions are taken into consideration. This indicates that the
virtual hyperedges play an important role in incorporating
the implicit relationship of the LBSNs. Virtual connections
shorten the distance between users and potentially appeal-
ing yet unvisited POIs, and preserve the implicit connec-
tions of LBSNs which helps improve the new POI
recommendation effectiveness.

4.3 Parameter Sensitivity

4.3.1 Impact of a

The parameter a controls the proportion of semantic and
geographical factors in establishing virtual hyperedges.
More geographical character is considered when a is closer
to 1 and vice versa. We tune the value of a from 0 to 1 with
a step of 0.2. Only semantic similarity is considered when
a ¼ 0. Fig. 6a shows the performance under different a.
Compared with a ¼ 0, when a begins to get larger, the per-
formance first gets worse and then becomes better. It

reaches the peak value when a ¼ 0:8 in IST and TKY data-
sets. The performance for a ¼ 0 is almost the same as a ¼
0:8 in NYC and JK datasets, and the trend is the same for all
datasets.

From the result we can also observe that the semantic
and geographical factors have an asymmetric effect on POI
recommendation. In particular, when a is close to 0, the vir-
tual connections are dominated by the semantic similarity,
while when a gets bigger, POI pairs that are geographically
closer to each other but farther than the users general scope
of activity are connected by the virtual connections, and
their semantic similarity is not high enough. In this sense,
the effect of the semantic similarity will be weaken and the
geographical similarity has little or even negative effect.
When a is close to 1, the geographical similarity is domi-
nant, and the effect of physical distance on POI pairs will be
adjusted. Geographically close POI pairs with high semantic
similarity will be taken into consideration.

4.3.2 Impact of b

In this part, we discuss the effect of the hyper-parameter b
on the performance. b decides the geographical similarity
percentage for normalization and is actually related to the
general activity scope of users. A larger bmeans that the far-
ther distance POIs pairs are considered for virtual connec-
tions. From the results in Fig. 6b, we can observe that b

indeed influences the POI recommendation performance.
The performance is sensitive to b on TKY and IST datasets
which means the users activity range is generally within
100 POIs from the current position. However, the perfor-
mance is not sensitive to b on the rest two datasets. This
may be owing to the different density of POIs in different
cities.

4.3.3 Impact of g

Virtual connections contribute to appropriate new POI rec-
ommendation. Here, we change the parameter g to examine
the impact of virtual connections ratio in achieving optimal
performance. As we can see in Fig. 6c, with the increase of
g, more virtual connections are sampled. The introduction
of virtual connections incorporates implicit relationship of
the LBSN and brings users closer to POIs that are unvisited
but are more likely to be checked-in. Furthermore, only lim-
ited check-in records are collected for each user, so the vir-
tual connections will help deal with the data sparsity issue
to an extent. However, when virtual connections are

Fig. 6. Impact of parameters of VirHpoi.
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excessively incorporated, the embeddings of POIs will be
trained with too much time and the process of graph
embedding will be greatly influenced by the extra virtual
connections. In this case, the effect of check-ins on embed-
ding is weakened and the performance will get worse. From
Fig. 6c, we can see that g ¼ 0:5 yields the best performance
for all datasets.

4.4 Impact of the Negative Sample Size

In our hypergraph embedding, the negative sampling
method is adopted to speed up the computation and N rep-
resents the number of negative samples for each edge from
a specific noise distribution. Fig. 7 shows the results with
different numbers of negative sample per example. It can be
observed that with more negative examples sampled, the
performance improves rapidly, and converges when the
negative sample size is around 50. At the same time, the
need of computational resources increases when more nega-
tive examples are sampled. Therefore, in our case, 50 nega-
tive samples yield the best performance in all datasets.

4.5 Impact of the Number of Samples

For embedding based methods, the number of samples has
a great impact on the computational speed and storage.
Therefore, we analyze the convergence performance by
varying the number of samples I. Fig. 8 shows the perfor-
mance of VirHpoi on the IST dataset. We can see that the
performance improves with the increase of number of sam-
ples and converges when more than 2.5 million samples on
the IST dataset. To achieve a satisfying trade off between
the effectiveness and the efficiency, I ¼ 3 million is a good
choice to ensure convergence while maintaining desirable
efficacy. The convergence is related to the size of the dataset,
so we set different I for different dataset proportional to the
number of collected check-in records.

4.6 effectiveness of Virtual Hyperedges

In this subsection, we aim to validate the effectiveness of
virtual hyperedges containing different numbers of objects
for new POI recommendation on IST dataset. Instead of
linking the top 1% POI pairs as virtual hyperedges, we use
clustering to construct virtual hyperedges with more than
two objects. From the results in Fig. 5b and Fig. 9, we can
see that the performance with virtual hyperedges is consis-
tently better than that without them. When L ¼ 3, the per-
formance is worse than that using virtual hyperedges by
linking the top 1% POI pairs. This is mainly because that a
POI belongs to only one edge while clustering and the num-
ber of potential neighbors for each POI is small. When L
increases, the relationships preserved by virtual hyperedges
grow exponentially, so the performance becomes better
than linking top 1% POI pairs as virtual hyperedges. When
L > 6, the performance starts to decrease and then keeps
stable, as some suboptimal pairs are involved to construct
the hyperedges.

5 RELATED WORK

5.1 POI Recommendation

POI recommendation is an inevitable product with the wide
spread of LBSNs. It has been studied by plenty of research-
ers in the past several years. There are abundant contextual
information in LBSNs and previous work make recommen-
dations by modeling these contextual information. The
methods can be divided into two categories: fused model
and joint model. Fused models [36], [37] establish models
for each factor, and then combine their results. Joint models
depict the check-in behaviors as a synchronized decision
influenced by factors together, which reflects the real sce-
nario better. More recently, lots of joint models have been
proposed for POI recommendation. For example, Xie et al.
[13] jointly capture several effects in a unified way by
embedding four correspond relation graphs into a shared
latent space. Numbers of POI recommendation models
have been proposed nowadays, but most of the existing
models have difficulty dealing with data sparsity for the
limitted check-ins of each user. Recent advance in graph
embedding provides an effective and convenient way to
address the issue of data sparsity in a unified way. By
applying graph embedding on POI recommendation, our
proposed VirHpoi not only gains benefit brought by syn-
thetically integrating different factors but also learns mas-
sive heterogeneous LBSN data effectively.

Note that there are different types of POIs recommend-
ing in different scenarios [33], [35], [38], and the most

Fig. 7. Impact of N.

Fig. 8. Impact of I on IST dataset.

Fig. 9. Effectiveness of virtual hyperedges on IST dataset.
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common one is for the next POI recommendation that is to
recommend a list of possible POIs for a user to visit at next
time point [4], [35]. In addition to a single POI recommenda-
tion, sequential POI recommendations [33] focus on recom-
mending consecutive POIs to users, which are usually used
for travel route suggestion. Considering that users often
visit new POIs that they have not been visited before, some
works [8], [24], [38], [39] focus on recommending new
unvisited POIs to users, which is also the scenario we con-
sider in this paper.

5.2 Graph Embedding

We make POI recommendations based on graph embed-
ding [40], [41], which has attracted a great deal of atten-
tion in recent years. The main idea is to use a correlation
algorithm to represent nodes in the network with a low-
dimensional vector space, while the necessary structure
and properties of the original network are reserved.
Numbers of graph embedding models have been devel-
oped so far. DeepWalk [30] exploits truncated random
walk and skip-gram model to learn the vector representa-
tions. Node2vec [42] improves the random walk scheme
to better sample the network structure. LINE [34] models
the first-order and second-order proximities between ver-
tices. But the works discussed above concentrate on
homogenous network. Therefore, researchers turn to
more complex networks like heterogeneous networks and
hypergraphs. For example, metapath2vec [15] uses meta-
path-based random walks to construct heterogeneous
neighborhood. DHNE [18] proposes a deep model to
embed hyper-networks.

More recently, graph embedding techniques are applied
to LBSNs. For example, LBSN2vec [19], [20] uses random-
walk-with-stay scheme to sample edges and employs a
hypergraph embedding model. LBSN2vec performs ran-
dom walk on user objects based on their friendship, so its
sampling relies heavily on social relations. Wang et al. [16]
construct the heterogeneous neighborhood of a node by for-
malizing a meta-path based random walk. These works
decompose the LBSNs as arbitrary graphs or directly per-
form embedding on heterogeneous networks. Unlike exist-
ing studies that concentrate on explicit connections, we
regard check-ins as hyperedges and design a heterogeneous
hypergraph embedding model to better preserve complex
interactions in the LBSNs.

6 CONCLUSION

In this paper, we have presented VirHpoi, a novel heteroge-
nous hypergraph embedding method for POI recommenda-
tion in LBSNs. To preserve the implicit relationship of the
LBSN which synthetically reflects the relationship from the
perspective of POIs, we make virtual connections by captur-
ing semantic and geographical characters. We then preserve
the complex structure of the LBSN hypergraph by learning
homophily and interaction attribute relations of LBSN
objects. Extensive experiment results on real-word datasets
validate the benefits from the virtual hyperedges and show
that VirHpoi can consistently outperform the state-of-the-
art graph embedding methods.
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