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ABSTRACT
Click-through rate (CTR) prediction is one of the core tasks in in-
dustrial applications such as online advertising and recommender
systems. However, the performance of existing CTR models is ham-
pered by the cold-start users who have very few historical behavior
data, given that these models often rely on enough sequential behav-
ior data to learn the embedding vectors. In this paper, we propose
a novel framework dubbed GF2 to alleviate the cold-start problem
in deep learning based CTR prediction. GF2 augments the embed-
dings of cold-start users after the embedding layer in the deep CTR
model based on the Generative Adversarial Network (GAN) , and
the obtained generator by GAN can be further fine-tuned locally to
enhance the CTR prediction in cold-start settings. GF2 is general
for deep CTR models that use embeddings to model the features
of users, and it has already been deployed in real-world online
display advertising system. Experimental results on two large-scale
real-world datasets show that GF2 can significantly improve the
prediction performance over three polular deep CTR models.

CCS CONCEPTS
• Information systems → Recommender systems; Personal-
ization; • Computing methodologies → Generative and develop-
mental approaches.
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Figure 1: The pipeline of GF2. Blue dotted box shows the
training of a regular deep CTR models while red dotted box
shows the training of CTR models aided by GF2.

1 INTRODUCTION
Click-through rate (CTR) prediction, which aims to predict the
likelihood that the recommended items will be clicked by a user,
is an essential component in many online applications, such as
e-commerce portals [5, 18] and social applications [15]. CTR predic-
tion has made great progress in recent years [1, 3, 6, 9, 13, 17–19],
benefiting from deep neural networks due to the strong expressive
ability and the flexibility to learn rich representations from histori-
cal interactions. However, these deep CTR models suffer from the
so-called cold-start problem [7], where some users have very few
or even no historical behavior data to train a satisfactory model for
them, yielding the personalized recommendation challenging.

Several methods have been proposed to deal with the cold-start
problem in CTR, using the side information [8, 11] or the knowledge
graph to automatically propagate users’ potential preference [12].
Recently cross domain recommendation is utilized to improve
the performance of CTR prediction in the target domain [4, 20],
and meta-learning is adopted to transfer knowledge from other
users/items to alleviate missing data of the target user [21]. How-
ever, existing solutions still suffer from the absence of practical and
effective data augmenting to well address the cold start problem.

In this paper, we propose a general GAN-based Feature Gener-
ation Framework (GF2) to augment the embedding of cold-start
users for deep learning based CTR models. Observing that most
deep CTR models follow a similar structure of Embedding & Multi-
Layer Perceptron (MLP) [18, 19] (c.f. Figure 1(a)), we propose to
generate item embeddings, instead of item IDs in usual practice,
after the embedding layer. We adopt the Generative Adversarial
Network (GAN) to generate embeddings through a minimax game
(c.f. Figure 1(b)), considering that GAN’s compelling capability to
generate realistic examples plausibly drawn from the existing dis-
tribution of real samples. Thereafter, we fine-tune the parameters
of the obtained generator by GAN to ensure that the generated
embedding could enhance the performance of specific CTR model
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Figure 2: Illustration of model structure. Left part shows the structure of the base model (Embedding&MLP) aided by GF2.
A GAN-based unit (the red dotted box) is introduced, which takes the concatenated embedding as the condition and outputs
generated sample. Right part details the structure of GAN.

in cold-start setting (c.f. Figure 1(c)). By doing so, existing deep
CTR models can be aided by GF2 to obtain a great performance
gain on CTR prediction.

The main contributions of this paper are summarized as follows:
• We propose GF2, a general GAN-based feature generation
framework to augment the embedding of cold-start users.
Our framework is general for deep CTR models that use
embeddings to model the features of users, and it has al-
ready been deployed in real-world online display advertising
system of Alibaba Group.

• We propose to use GAN to generate cold-start users’ se-
quence embeddings with side information as the condition.
The obtained generator can be fine-tuned locally to enhance
the prediction of specific CTR model in cold-start settings.

• We verify GF2 on two large-scale real-world datasets and re-
lease the code for reproduction1. Experimental results show
that GF2 can significantly improve the prediction perfor-
mance over three state-of-the-art deep CTR methods.

2 GF2 DESIGN
2.1 Embedding & MLP
Most of the popular deep models are similar to Embedding & MLP
structures, in the domain of CTR prediction (c.f. the blue dotted
part in Figure 1).

Embedding.Data is normally transformed into high-dimensional
sparse binary features in the industrial CTR prediction online set-
ting. With the advantage of embedding techniques, these original
sparse features can be transformed into low dimensional dense con-
tinuous vectors, called embeddings. Similar to [19], we encode each
feature into a single one-hot vector, which uses high-dimensional
sparse binary encoding, based on its multi-group categorical form.

1https://www.dropbox.com/s/z4pf5ipugqc36cp/GF2-Code.zip?dl=0

MLP. These one-hot vectors are transformed into a fixed-length
real-valued dense vector by the pooling layer to adapt to the struc-
ture of MLP after the embeddings of the features are obtained. MLP
is then used to automatically learn the feature combinations based
on the given inputs that are concatenated with dense embeddings.

2.2 GF2 Implementation
Given a well trained CTR model (called base model) along with
the well-trained embedding layers, GF2 mainly consists of two
stages: (1) Generative Adversarial Learning: train a GAN to
simulate the real distribution of behavior sequence embedding, and
(2) Generator Fine-Tuning: fine-tune the generator to adapt to
the CTR prediction task (c.f. Figure 1).

In Generative Adversarial Learning, the generator aims to
generate the plausible user historical behavior embedding, while
the discriminator aims to discriminate the generated embedding
and the real embedding (c.f. Figure 2). During the implementation,
we build our framework based on Conditional GAN (CGAN), where
the conditional inputs are concatenated with the embedding of user
profile features and user historical behaviors. Formally, the training
objective of Generative Adversarial Learning can be simulated as a
minimax game:

min
𝐺

max
𝐷

𝑉 (𝐺, 𝐷) = E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) log (𝐷 (𝑥 |𝑐))

+E𝑧∼𝑝𝑧 (𝑧) log (1 − 𝐷 (𝐺 (𝑧 |𝑐)))
(1)

where 𝑥 represents the embedding of the user’s last historical be-
havior, seen as the True Sample in Figure 2; 𝑐 corresponds to the
concatenated embedding as the condition, and 𝑧 denotes a random
noise vector, seen as the Condition and the Noise in Figure 2.

In this minimax game, the discriminator D aims to maximize
the objective function whereas the Generator G aims to minimize
it. Both G and D are represented by deep neural networks and
trained by the stochastic gradient descent with minibatch and back-
propagation algorithm. Mathematically, the objective function of
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the discriminator is denoted as:
𝐽𝐷 = −E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) log (𝐷 (𝑥 |𝑐)) − E𝑧∼𝑝𝑧 (𝑧) log (1 − 𝐷 (𝐺 (𝑧 |𝑐)))

(2)
and the objective function of the generator as:

𝐽𝐺 = E𝑧∼𝑝𝑧 (𝑧) log (1 − 𝐷 (𝐺 (𝑧 |𝑐))) (3)
We train the model G and D alternately, keeping one fixed while

updating the other. When the discriminator is unable to correctly
discriminate the generated behavior sequence embeddings from
the real ones, we completed the training of GAN. As a result of this
stage, we expect that well-trained generator would capture the true
distribution of real behavior sequence embedding.

InGenerator Fine-Tuning, the generator is trained on the CTR
task by simply fine-tuning its parameters. Our goal is to ensure
the generated embeddings could enhance the ability of the recom-
mender, especially for cold-start users. The objective function of
the generator in Generator Fine-Tuning is denoted as follows:

𝐿𝐺 = − 1
𝑁

𝑁∑
𝑖=1

𝑦𝑖 log 𝑓𝜃 (𝑥𝑔𝑒𝑛) − (1 − 𝑦𝑖 ) log (1 − 𝑓𝜃 (𝑥𝑔𝑒𝑛)) (4)

where 𝑥𝑔𝑒𝑛 is the enhanced input of MLP that adds the gener-
ated embeddings into the embedding of user historical behaviors
when concatenated with user profile features,𝑦𝑖 ∈ {0, 1} represents
whether the user clicked the item and 𝑓𝜃 (𝑥𝑔𝑒𝑛) is the prediction
output of MLP, representing the prediction probability of the item
to be clicked.

3 PERFORMANCE EVALUATION
3.1 Experiment Setup
3.1.1 Datasets. We conducted experiments on a public dataset
as well as an industrial dataset collected from the online display
advertising system of our company (see Table 1; 𝐿𝑚𝑒𝑎𝑛 means the
mean length of the sequence).

Table 1: Dataset statistics.

Dataset Users Items Instances 𝐿𝑚𝑒𝑎𝑛

Taobao 1,141,730 846,812 26,557,962 3.3
Industrial 5,167,854 32,539,198 349,609,464 1.9

Taobao Dataset2 is constructed by user behavior logs from
Taobao’s recommender system.We take the click behaviors for each
user and sort them according to time in an attempt to construct the
behavior sequence. We use logs of the first 7 days as the training
set (23,249,276 instances) and logs in the 8th day as the testing set
(3,308,686 instances). We split the recent 100 user behaviors as user
behavior sequences, as in [14, 18, 19].

Industrial Dataset is collected from the online display adver-
tising system of Alibaba Group. We use logs of the first 30 days as
the training set, while logs in the 31st as the testing set.

3.1.2 Base Models. We conduct experiments on the following
mainstream CTR prediction models (also as base models):

• DNN is the basic deep learning model that follows the Em-
bedding & MLP structure for CTR prediction.

2https://tianchi.aliyun.com/dataset/dataDetail?dataId=56

• DIN [19]: applies attention to both the target item and user
historical sequence to better model user interest subject to
the target item.

• DIEN [18]: integrates GRU with attentional update gate for
capturing the evolution trend of user interests and achieves
state-of-the-art performance. It can be considered as an im-
proved version of DIN.

3.1.3 Experiment Settings. We take the same implementations of
the base models as that of DIEN [18] so that the results can be fairly
compared. For all models, we take the Adam as the optimizer with
the learning rate 0.001. Layers of fully connected network (FCN)
and embedding layer are the same as in [18]. All experiments are
repeated 5 times and average results are reported.

3.1.4 Metrics. We consider two common metrics, the AUC score
(Area Under Receiver Operator Characteristic Curve), a widely used
metric in CTR prediction [2, 18], which reflects the ranking ability
of the model and is defined as follows:

𝐴𝑈𝐶 = − 1
|𝐷+ | × |𝐷− |

∑
𝑥+∈𝐷+

∑
𝑥−∈𝐷−

(𝐼 (𝑓𝜃 (𝑥+) > 𝑓𝜃 (𝑥−))) (5)

where 𝐷+ is the collection of all positive examples, and 𝐷− is the
collection of all negative examples. 𝑓𝜃 (·) is the prediction result of
the model and 𝐼 (·) is the indicator function.

In addition, we follow [10, 16, 19] to adopt the RelaImpr metric
to measure the relative improvement over the base model. For a
random guesser, the value of AUC is 0.5, so RelaImpr is defined as:

𝑅𝑒𝑙𝑎𝐼𝑚𝑝𝑟 = (𝐴𝑈𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑚𝑜𝑑𝑒𝑙 − 0.5
𝐴𝑈𝐶𝑏𝑎𝑠𝑒−𝑚𝑜𝑑𝑒𝑙 − 0.5

− 1) × 100% (6)

3.2 Performance of GF2
3.2.1 Universality of GF2. We first evaluate the performance of
GF2 by testing on each base model before/after being aided by our
GF2 on the Taobao dataset and industrial dataset. From the results in
Figure 3, we find that GF2 can be applied to aid various base models
well, even deploy in our online display advertising systemwith large
scale industrial base model (Ind-BM). With different base models,
GF2 is effective to improve the recommendation performance for
cold-start users, showing satisfactory effectiveness and universality.
Compared with the sequence models DIN and DIEN, GF2 has a
higher performance gain on DNN. This observation indicates that
the generated embeddings by GF2 indeed enhance the ability of
the CTR prediction. We also notice that the gain is less obvious
in DIEN, as there is no obvious sequential logic in our generated
embeddings, and thus GF2 contributes less for base models that
attach more importance to the sequence feature.

Figure 3: AUC of base model aided by GF2.
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Table 2: AUC of cold start dataset aided by GF2.

Setting DNN DIN DIEN

Original Dataset 0.5637 0.5632 0.5644
Cold Start Dataset 0.5594 0.5629 0.5571

Cold Start Dataset + GF2 0.5621 0.5636 0.5622

Table 3: AUC and execution time (hours) on Taobao dataset.

Model Training Methods AUC Time

DNN
Base Model 0.5805 82.5

Base Model with Repetition Training 0.5830 165.1
Base Model Aided by GF2 0.5890 101.6

DIN
Base Model 0.5766 84.7

Base Model with Repetition Training 0.5787 167.3
Base Model Aided by GF2 0.5849 103.2

DIEN
Base Model 0.5671 83.3

Base Model with Repetition Training 0.5683 168.6
Base Model Aided by GF2 0.5689 103.0

3.2.2 Cold Start Effect. To verify the effect of GF2 to the cold start
problem, we next explore the influence of the cold start setting.
We can see from Table 1 that the mean length of the sequence of
Taobao dataset is 3.3, so we build the original dataset with users of
length greater than 3.3, and a part of users are randomly selected
to delete their sequence to construct the cold start dataset. In all
three base models, the results of the cold start dataset aided by GF2
are better than without GF2, as can be observed in Table 2. From
these results, we can see that GF2 enhances the embeddings of the
cold-start users.

3.2.3 Efficiency of GF2. From the above experiment results, it is
shown that the application of GF2 indeed improves the effect of
multiple base models. However, the framework also increases the
parameters of model’s network. From the point of view of effi-
ciency, the necessity of GF2 has to be analyzed. Table 3 outlines
the experimental results and execution time of different training
methods based on multiple base models. It should be noted that the
total parameters of all these three base models are approximately
144 million, and GF2 adds about 36 million parameters to the base
models. So, the ratio of the trainable parameter for Pre-Training
and other stages in GF2 is about 4:1. As a result, the framework
aided by GF2 takes about a quarter of the additional time compared
to repetition training and gets better results. The higher recommen-
dation quality and less time consumed demonstrate the necessity
of training a model with GF2 in cold-start scenarios.

3.3 Ablation Study
This section performs ablation studies to illustrate the effectiveness
of the two stages including Generative Adversarial Learning (GAN)
and Generator Fine-Tuning (Gen). Five training stages are designed
for comparison as follows:

(1) CTR Pre-Training: training with only the deep CTR model
(i.e., the base model).

(2) CTR Pre-Training + GAN: taking GAN to learn the real dis-
tribution of embedding after the deep model pre-training.

Table 4: AUC of different stages in GF2.

Model DNN DIN DIEN

CTR Pre-Training 0.5805 0.5766 0.5671
CTR Pre-Training + GAN 0.5722 0.5751 0.5673
CTR Pre-Training + Gen 0.5880 0.5854 0.5693

CTR Pre-Training + Gen + GAN 0.5770 0.5744 0.5677
CTR Pre-Training + GAN + Gen 0.5890 0.5849 0.5689

Figure 4: The kernel density estimate (KDE) of embedding
of different stages of DNN aided by GF2.

(3) CTR Pre-Training + Gen: training with the generator based
on the pre-training model.

(4) CTR Pre-Training + Gen + GAN: training the generator based
on the pre-training model alone, then taking GAN to learn the real
distribution of embedding.

(5) CTR Pre-Training + GAN + Gen: based on the trained deep
CTR model, taking GAN to learn the distribution of real embedding
and adjust the generator to adapt to the CTR task.

In Table 4, we show the ablation results for different training
stages of multiple base models on the Taobao dataset. It is ob-
served that the performance of base models becomes better after
the Generator Fine-Tuning stage, while the addition of the Genera-
tive Adversarial Learning stage does not improve the prediction,
which indicates that the Generator Fine-Tuning can significantly
improve the recommendation performance for cold-start users.

In order to explore the role of the Generative Adversarial Learn-
ing stage, we analyzed the influence of this stage on the feature
distribution of the generated sequence embeddings. We visually
illustrate this problem by comparing the results of DNN with dif-
ferent training stages as shown in Figure 4. It can be seen that
without the Generative Adversarial Learning stage, the sequence
embeddings generated by the generator have significant differences
from the real sequence embeddings in the feature distribution.

4 CONCLUSIONS
In this paper, we have proposed a novel feature generation frame-
work (GF2) to address the cold-start problem in CTR prediction by
augmenting embedding with GAN. The proposed GF2 is a general
framework that can be applied to various deep CTR models that use
embedding techniques. Experimental results on real-world datasets
demonstrate that GF2 can significantly improve the prediction per-
formance over three major deep CTR models.
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