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Abstract—Although federated learning (FL) enables collabo-
rative training across multiple data silos in a privacy-protected
manner, naively minimizing the aggregated loss to facilitate an
efficient federation may compromise its fairness. Many efforts
have been devoted to maintaining similar average accuracy across
clients by reweighing the loss function while clients’ potential con-
tributions are largely ignored. This, however, is often detrimental
since treating all clients equally will harm the interests of those
clients with more contribution. To tackle this issue, we introduce
utopian fairness to expound the relationship between individual
earning and collaborative productivity, and propose Federated-
UtoPia (FedUP), a novel FL framework that balances both efficient
collaboration and fair aggregation. For the distributed collabora-
tion, we model the training process among strategic clients as a
supermodular game, which facilitates a rational incentive design
through the optimal reward. As for the model aggregation, we de-
sign a weight attention mechanism to compute the fair aggregation
weights by minimizing the performance bias among heterogeneous
clients. Particularly, we utilize the alternating optimization theory
to bridge the gap between collaboration efficiency and utopian
fairness, and theoretically prove that FedUP has fair model perfor-
mance with fast-rate training convergence. Extensive experiments
using both synthetic and real datasets demonstrate the superiority
of FedUP.
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I. INTRODUCTION

W ITH the rapid development of distributed machine learn-
ing and mobile edge computing [1], [2], [3], federated

learning (FL) has been recognized as a new distributed paradigm
for enabling multiple clients to jointly train machine learning
models without exposing their raw data [4], [5]. Thanks to its
potential benefit in artificial intelligence to thrive in a privacy-
respecting society, FL has drawn increasing attention from both
academia and industry [6], [7]. According to the number of
clients and the scale of distributed collaboration, FL can be
classified into two types: cross-device FL where clients are
typically mobile devices and the number of clients can reach
up to a scale of millions, and cross-silo FL in which clients
are institutions or organizations has posed higher requirements
on the model performance for the ever-increasing demands of
reliable services for real-world applications, i.e., healthcare,
finance, industry, etc., while the number of clients is usually
small. In this work, we center on cross-silo FL characterized
by technical challenges of training efficiency and performance
requirements of substantial real-world applications.

To further improve the efficiency of cross-silo FL, many
studies focus on optimizing the prediction accuracy [8], training
loss [9], training time [10], convergence speed [11], etc. A
common drawback shared by existing works is that the server
attracts the most attentions while the interests of clients are
largely ignored during the training process, which would be
perceived as highly unfair and unacceptable to the worse-off
clients who contribute more but benefit less. The main rea-
sons behind this phenomenon are three-fold. First, due to the
data and client diversity, strategic clients may choose different
contributions in the process of model training with different
collaboration efficiency. Specifically, as shown in Fig. 1(a),
ensuring high model performance necessitates a large volume
of data samples for distributed collaboration, while strategic
clients prefer to strike a balance between gains and costs, i.e.,
little data samples with high model performance. Therefore,
solely minimizing empirical risk may harm the interests of
strategic clients, and lead to inefficient collaboration and uneven
performance across those clients as well [12]. Second, mere
loss minimization without caring about the individual prediction
accuracy may fail to capture the generalization of global model
on the testing datasets, thereby resulting in biased predictions
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Fig. 1. Collaboration efficiency and performance distribution under (a) dif-
ferent contributions in MNIST with FedAvg; (b) free-riding attack in CIFAR10
with q-FFL.

on specific clients’ local datasets [13]. Third, resource-efficient
clients with larger contribution would be more favorably selected
by the server, while clients with weaker capabilities might be
ignored which can result in insufficient number of clients and
low-level collaboration [14].

In addition to training efficiency, collaboration fairness also
plays a critical role in the success of FL, as clients who suffer
unfairness would passively participate in collaborative training,
or even leave the system, thus damaging the system sustainabil-
ity [15]. Existing efforts mainly focus on reweighing the loss
function to satisfy target fairness constraints in FL, which helps
to maintain a comparable model performance across heteroge-
neous clients at the expense of sacrificing system efficiency (e.g.,
q-FFL [13]). In particular, as shown in Fig. 1(b), when the ratio of
free-riding attacks increases, the mean of performance distribu-
tion (e.g., collaboration efficiency) will unsurprisingly decrease,
while the density variance of the clients’ performance distribu-
tion (e.g., the degree of unfairness) surprisingly increases. The
main reason behind this phenomenon is that q-FFL merely treats
clients equally without considering their potential contributions,
which is often ineffective in practice [16].

In summary, how to strike a balance between training effi-
ciency and collaboration fairness still remains an open problem
for cross-silo FL scenario, which however is challenging for
two-fold reasons. (i) Cross-silo FL often faces heterogeneous
clients which has the following negative impacts. First, non-
IID data may deteriorate the performance of the global model
and causes personalized model performance disparities among
clients. Second, different clients prefer to customizing a person-
alized model suitable for their application environments, which
may be restricted from the low efficiency of global collaborative
training. Third, clients are endowed with different resources
such as storage, computing and communication capabilities,
and it will cause diverse contributions to the model aggregation,
yet reducing the willingness of resource-rich clients to collabo-
rate [17]. (ii) Rational and selfish clients are only interested in
maximizing their own utilities, which prevents efficient collabo-
rations when considering the conflict between individual utilities
and social welfare. In cross-silo FL, social welfare often refers to
the sum of prediction accuracy of global model on local dataset
of each client, while social fairness usually measures the dispar-
ity in benefits and contributions among heterogeneous clients.
The aforementioned free-riding behaviors will discourage the

participation from the worse-off clients, thereby damaging the
system sustainability. Therefore, how to incentivize strategic
clients to actively and reliably participate in heterogeneous
cross-silo FL, rather than benefiting only a small portion of
clients, is crucial to the success of cross-silo FL and remains
as a significant challenge in practice.

With this in mind, there is an urgent need to develop a
new collaboration form to bridge the gap between system ef-
ficiency and social fairness in cross-silo FL. In this paper, we
introduce utopian fairness to expound the relationship between
individual earning and collaborative productivity. To achieve this
utopian fairness, we develop a novel collaborative framework,
Federated-UtoPia (FedUP), which constrains the collaborative
behaviors of strategic clients and the aggregation method of the
server, respectively. Particularly, we can achieve the optimal
design of FedUP via leveraging supermodular game and weight
attention mechanism. Therefore, FedUP advances in both the
participant incentives and model aggregation, which jointly
contribute to superior performance when compared to the state
of the art. In summary, our main contributions are highlighted
as follows:
� To bridge the gap between efficiency and fairness, utopian

fairness, inspired by performance-related-pay, is pro-
posed for a novel FL collaborative framework named
FedUP with two major components: the efficient collab-
oration rule for active participation of strategic clients,
and the fair aggregation rule with fair performance
guarantee.

� To achieve the optimal design of FedUP, we design the ef-
ficient collaboration rule by modeling the FL collaboration
as a supermodular game to incentivize clients with the opti-
mal monetary reward, and the weight attention mechanism
to compute the aggregation weights for fair performance
distribution. In particular, we utilize the alternating opti-
mization theory to bridge the gap between collaboration
efficiency and utopian fairness, and theoretically prove that
FedUP has fair model performance with a lower bound
guarantee of convergence.

� To evaluate the superiority of FedUP, we conduct extensive
experiments on a synthetic dataset and three real-world
datasets, and compare FedUP with two state-of-the-art
baselines, to demonstrate the effectiveness of our proposed
framework on balancing fairness and efficiency in cross-
silo FL.

In the rest of this article, we first review related work in
Section II, and then present system model with FL setting,
utopian fairness and problem formulation in Section III. Fol-
lowed by the the problem transformation and the definition
of FedUP in Section IV, we describe the optimal design of
FedUP in Section V. We conduct experimental evaluations in
Section VI, and finally draw the conclusion in Section VII.

II. RELATED WORKS

In recent years, cross-silo FL is becoming a new distributed
collaboration paradigm for substantial real-world application
scenarios with two-folds reasons. On the one hand, cross-silo
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FL helps break down the barriers among large organizations
to allow for a greater data sharing, and hence emerges as a
promising solutions to the crisis of isolated “data silos” [18].
On the other hand, cross-silo FL enables distributed learning in
a privacy-protected manner, since organizations’ sensitive data
does not leave their databases with training being performed
locally [19].

With the emergence of an increasing number of FL applica-
tions, more and more attention has paid to improve collaboration
efficiency for high model performance. For example, Tang et
al. [20] proposed an incentive mechanism for cross-silo FL to
incentivize high-level collaboration by maximizing the social
welfare without knowing the valuation and cost of each client.
From the communication efficiency perspective, Marfoq et al.
[21] focused on the problem of topology design in cross-silo
FL to compute the system throughput by using the theory of
max-plus linear systems. The training efficiency in cross-silo
FL also depends on the collaboration pattern, and Huang et
al. [22] explored a idea of facilitating pairwise collaborations
and proposed a method named FedAMP to improve the model
performance by working out the problem of Non-IID data.
The works summarized above focus solely on the collabora-
tive efficiency of model training, neglecting the sustainability
of FL.

Compared to the significant impact of collaboration efficiency
on the success of FL, fairness plays a key role in the sustainability
of cross-silo FL [23], [24]. For instance, hospitals strive to train
fair models with medical data collected from geographically
varying populations, so that the global model can have a min-
imum bias toward patients. Specifically, AFL is proposed to
achieve fairness by preventing the global model from overfitting
any particular client at the expense of the others’ [25]. Nev-
ertheless, the performance satisfies only when the number of
clients is small, while the model generalization is poor as the
client population scales. To alleviate the scalability limitation of
AFL, q-FFL, inspired by α-fairness, is proposed to encourage a
more uniform accuracy distributions across clients in FL [13].
In particular, q-FFL tunes parameter q to reweight the total loss
by assigning higher weights to clients with higher loss, and
vice versa. Compared to AFL, q-FFL achieves lower accuracy
variance and faster convergence, and is more general than AFL,
especially when q is large enough. In spite of this, the fact that q-
FFL maintains a uniform performance inevitably leads to a drop
in accuracy without preventing free-riding attacks of strategic
clients.

Although there exist several solutions of fair federation col-
laboration, few works in cross-silo FL have take collaboration
efficiency and social fairness into consideration simultaneously.
Although Li et al. [26] proposed a solver named Ditto to
provide fairness benefits, it maintained equality among all clients
without considering potential contribution, which is at price of
collaboration efficiency. Thus, in our work, it is important to
understand how the clients’ training behaviors affect the social
fairness of the global model without sacrificing collaboration
efficiency, and bridge the social fairness and collaboration ef-
ficiency by considering the potential contribution among all
clients.

TABLE I
SUMMARY OF MAIN NOTATIONS IN THIS PAPER

III. SYSTEM MODEL

In this section, we describe the setting of cross-silo FL, the
definition of utopian fairness and the problem formulation. The
notations used in this paper are summarized in Table I.

A. Cross-Silo FL

A cross-silo FL system involves multiple data centers learning
locally on their local dataset and communicating with the central
server periodically to update the global model. Specifically,
considering a set C = {c1, . . . , cn} of clients participate in
cross-silo FL with local dataset D = {D1, . . . , Dn}, each client
ci ∈ C will select data samples {xj , yj}sij=1 ⊆ Di with her data
amount strategy si ∈ S to join in the collaboratively training,
where {xj , yj} are the feature and label of jth data sample, and
S = {s1, . . . , sn}. Furthermore, we describe the loss function
of each client ci ∈ C, which is often defined as the empirical risk
over local data:

Fi(ω, {xj , yj}sij=1) =
1

si

si∑
j=1

l(ω, xj , yj). (1)

Traditional FL only focus on minimizing the aggregated train-
ing loss [22], i.e., minω F (ω) =

∑n
i=1 piFi(ω, {xj , yj}sij=1),

where pi ≥ 0 is a weight parameter, without caring about the
testing accuracy of global model on the local dataset of each
client, which largely ignores the generalization of global model
and the interest of heterogeneous clients. Traditional FL meth-
ods typically separate training and inference, failing to utilize
inference to guide model training. In order to simultaneously im-
prove fairness in inference performance and efficiency in model
training within FL, and inspired by parameter regularization
techniques [27], [28], we adopt a novel objective function to
minimize the training loss and maximize the testing accuracy
on the local dataset of each client as follows:

max
{qi,pi,si}ni=1

n∑
i=1

qiGi(ω,Di)−
n∑

i=1

piFi(ω, {xj , yj}sij=1), (2)

where qi ≥ 0 is the weight parameter of Gi(ω,Di) which is
the testing accuracy of global model on the local dataset Di of
client ci.
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Fig. 2. The Training Process of Cross-Silo Federated Learning.

As shown in Fig. 2, during the t-th training round, there are
five steps to complete the model update in the training process
of cross-silo FL:
� Step 1©: When t = 1, the central server initializes the

global model randomly. When t > 1, each client down-
loads the global model updated from the previous t− 1
round for local training.

� Step 2©: Each client tests the performance of global
model on the local dataset, i.e., Gi(ω,Di), for subsequent
decision-making and local training.

� Step 3©: Each client first decides the data amount strategy
i.e., {xj , yj}sij=1, and then completes the local training with
corresponding data amount.

� Step 4©: After finishing the model update, each client
uploads the new model parameters to the central server.

� Step 5©: The central server generates a new global model
by aggregating the uploaded model for the next round with
the following manner:

ωt+1 =

n∑
i=1

(qi + pi)ω
t
i , s.t.

n∑
i=1

qi = 1,

n∑
i=1

pi = 1. (3)

B. Utopian Fairness

The traditional fairness forms (e.g., Proportional Fairness
(PF), Kolmogorov-Smirnov (KS) fairness and Max-Min fair-
ness) focus primarily on the even allocation of collective utility.
However, in the cross-silo FL scenario, it is not only imperative
to address the issue of collective utility allocation but also crucial
to design strategies for enhancing the performance of federated
collaborative learning. Different from the other distributed learn-
ing forms, the challenge of cross-silo FL is how to collabora-
tively train a global model with high performance for hetero-
geneous clients with non-IID data. In addition to the prediction
accuracy of global model, maintaining social fairness is critical
to sustainable healthy collaboration in FL systems. In previous
works [13], [25], [26], [29], fairness was mainly achieved by
the standard deviation of performance among clients. However,
equality and fairness are quite different, and the fairness re-
quirements of different clients are also different. The average
accuracy among clients is maintained by re-balancing the loss
function, which achieves equality rather than fairness. The main

reason is that it blindly treats all clients equally, and ignores the
variability of their potential contributions [16]. Consequently, it
is necessary to introduce a novel fairness criterion that adapts
to the efficiency of collaboration while addressing the tactical
behavior of selfish clients. To this end, we incorporate the
performance-related-pay (PRP) [30] policy to fairly distribute
rewards based on the contributions of heterogeneous clients.
Inspired by the above PRP policy, we introduce a new fairness
criterion, named Utopian Fairness (UF), which means that each
client can be reasonably rewarded according to her actual con-
tribution.

Definition 1 (UF): Given the clients’ data amount strategies
{si}ni=1, the performance distribution of global modelω on each
local dataset {Di}ni=1 satisfies UF if

Gi(ω,Di)

si
=

∑
j �=i Gj(ω,Dj)∑

j �=i sj
, ∀i ∈ [1, n]. (4)

UF is an ideal reward allocation criterion, which puts forward
strict requirements for the test accuracy of global model on
different local datasets, and only when test accuracy Gi is
proportional to the strategy si of client ci, the UF condition in this
scenario can be guaranteed. Such scenarios requiring absolute
fairness are relatively rare, thereby limits the applicability of UF.
To adapt to more application scenarios, we introduce a relatively
weak definition of UF:

Definition 2 (ε-UF): Given the clients’ data amount strate-
gies {si}ni=1 and a fairness threshold ε ≥ 0, the performance
distribution of global model ω on each local dataset {Di}ni=1

satisfies ε-UF if

∣∣∣Gi(ω,Di)

si
−

∑
j �=i Gj(ω,Dj)∑

j �=i sj

∣∣∣ ≤ ε, ∀i ∈ [1, n]. (5)

It is easy to find that the strictness of ε-UF monotonically
decreases with fairness threshold ε. As long as ε is sufficient
large, ε-UF solutions always exist. When ε = 0, UF and ε-UF
are equivalent.

C. Problem Formulation

The goal of cross-silo FL with UF is to maximize the per-
formance distribution of global model on each local dataset,
and minimize the loss function in collaborative training process.
Therefore, we formulate this optimization objective of this paper
as finding the optimal weight parameters {qi}ni=1, {pi}ni=1, and
the optimal strategy {si}ni=1 under constraints of aggregation
manner and ε-UF:

P1 : max
{qi,pi,si}ni=1

n∑
i=1

qiGi(ω,Di)−
n∑

i=1

piFi(ω, {xj , yj}sij=1),

s.t. (3), (5). (6)

Remark: P1 contains three sets of optimization variables
{qi}ni=1, {pi}ni=1 and {si}ni=1. We recall the aggregate weights
{qi}ni=1 as fairness factors, and {pi}ni=1 as efficiency factors.
As shown in Fig. 3, we can observe that these three variables
are entangled. In particular, the fairness factors {qi}ni=1 in local
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Fig. 3. The entangled relation among the three optimization variables.

testing (step 2©) have a great impact on the performance dis-
tribution of global model on each local dataset. Moreover, the
fairness factors also exhibit a guiding influence on the behaviors
of strategic clients in local training (step 3©), i.e., the data sample
amount {si}ni=1, and the manner of global model aggregation
(step 5©). The efficiency factors {pi}ni=1 are dependent on the
behaviors of all clients, i.e., data sample amount {si}ni=1, and
determine the model aggregation which will impact the fairness
factor {qi}ni=1 in the next training round. The key to solving the
optimization problem P1, lies in finding the optimal balance
between fairness and efficiency, rather than sacrificing efficiency
to maintain fairness or ignoring fairness in pursuit of higher
efficiency.

IV. PROBLEM TRANSFORMATION

In this section, we utilize the alternating optimization theory
to transform the intractable federated optimization problem
P1 into two sub-problems, and propose a novel collaborative
framework for cross-silo FL with two collaboration rules.

A. Problem Transformation

As discussed above, we need to solve the optimization prob-
lem P1 by computing the optimal values of three entangled
variables {qi}ni=1, {pi}ni=1 and {si}ni=1. In order to reduce its
complexity, we leverage the alternating optimization theory to
decompose the original problem into two sub-problems with
multiple iterations optimization. The key idea is to compute
the optimal value of one set of optimization variable by fix-
ing the other optimization variables, and then solve for the
remaining optimization variables sequentially iteratively until
convergence.

To this end, we denote the objective function of problem P1
as F , and describe the three steps of alternating optimization as
follows: we first fix the fairness factors and the efficiency factors
as {q̄i}ni=1 and {p̄i}ni=1 respectively, and compute the optimal
values of clients’ strategies {s∗i}ni=1 by solving the following
problem:

{s∗i}ni=1 = arg max
{si}ni=1

F({q̄i}ni=1, {p̄i}ni=1, {si}ni=1). (7)

Then, we fix the clients’ strategies {s̄i}ni=1 with {s∗i}ni=1, and
obtain the optimal values of the fairness factors and the efficiency

Fig. 4. The Optimal Design of FedUP.

factors, i.e., {q∗i }ni=1 and {p∗i}ni=1 :

{q∗i , p∗i}ni=1 = arg max
{qi,pi}ni=1

F({qi}ni=1, {pi}ni=1, {s̄i}ni=1).

(8)
After one iteration, we evaluate whether the values of three
optimization variables(i.e., {q∗i }ni=1, {p∗i}ni=1 and {s∗i}ni=1) are
converged. Otherwise, continuously iterate until convergence.
As for the multiple iterations optimization, it is important to
make sure that the iterations will terminate. According to the
convergence analysis of alternating optimization theory [31], we
should prove that the functions F({q̄i}ni=1, {p̄i}ni=1, {si}ni=1)
and F({qi}ni=1, {pi}ni=1, {s̄i}ni=1) are both convex in Sec-
tion V-C. In this way, the iterations in the above three steps
can converge with theory guarantee.

B. Collaboration Framework for FL

To balance efficiency and fairness in FL with the above three
optimization steps based on alternating optimization theory, we
develop a novel collaborative framework, named Federated-
UtoPia (FedUP).

Definition 3 (FedUP): FedUP is defined as a collaborative
framework, represented as a 2-tuple (ξ, ζ), i.e., an efficient
collaboration rule ξ, and a fair aggregation rule ζ.
� ξ : C → R+ ∪R+ solves the efficient collaboration prob-

lem P2 and finds the optimal collaboration strategy
{si}ni=1 with the fixed {q̄i}ni=1 and {p̄i}ni=1, i.e.,

P2 : max
{si}ni=1

F({q̄i}ni=1, {p̄i}ni=1, {si}ni=1),

s.t. (3), (5). (9)

� ζ : C → R+ solves the fair aggregation problem P3 by
computing the optimal aggregate weights {qi}ni=1 and
{pi}ni=1 with the known clients’ strategy {s̄i}ni=1, i.e.,

P3 : max
{qi,pi}ni=1

F({qi}ni=1, {pi}ni=1, {s̄i}ni=1),

s.t. (3), (5). (10)

Remark: As shown in Fig. 4, the efficient collaboration rule ξ
can be used to incentivize the collaborative behaviors of clients,
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meanwhile the fair aggregation rule can be used to regulate the
aggregation method for fair performance distribution. For the
post-assessment property of the prediction accuracy of the global
model (validated on the local dataset without prior knowledge),
it is impossible to directly compute the optimal value with
highest efficiency while ensuring fairness. Thus, we decompose
the original problem P1 into two sub-problems P2 and P3,
and iteratively regulate the relationship between these two sub-
problems to improve the collaboration efficiency and utopian
fairness constraint at the same time.

V. OPTIMAL DESIGN OF FEDUP

In this section, we first compute the optimal design of the
efficient collaboration rule ξ as well as the fair aggregation rule
ζ, and then give the performance analysis of FedUP.

A. Optimal Design of Efficient Collaboration Rule

For the efficient collaboration rule ξ, we aim to find the
optimal values of {si}ni=1 which have a profound impact on
the performance of the global model. In order to improve the
collaboration efficiency, it is vital to incentivize all clients to
be willing to utilize more data sampling for model training.
Therefore, we view each self-conscious client as a strategic
player and adopt the utility function to incentivize clients with
a certain reward.

First of all, we define the utility of client ci by the rewards
she receives and the costs she pays, i.e.,

ui(si, s−i) = ri(si, s−i)− kisi, (11)

where ki is the unit cost of client ci, and s−i denotes the strategy
profile excluding si. Clearly, a client’s reward depends not only
on her own strategy, but also on the strategies of others. In order
to incentivize all clients with more data samples to participate in
the model update, the reward ri(si, s−i) should be well designed
to improve the collaboration efficiency while satisfying ε-UF.

Theorem 1: Given a set of strategy profiles {si}ni=1 of clients
and a set of fairness thresholds {εi}ni=1, the optimal reward for
client ci is

ri(si, s−i) =
nsi

∑
j �=i sj

(n− 1)eεi
∑n

j=1 sj
. (12)

Proof: See Appendix A, available online. �
According to the client’s utility function, each client as a

strategic player only with the optimal contribution data samples
can maximize its utility. In order to improve the prediction accu-
racy of the global model, we should incentivize strategic clients
to train models with more data samples. As the widely utilized
incentive approach [32], [33], [34], we can find the optimal
values of {si}ni=1 by maximizing the social utility defined as
the sum of the utilities of all clients. Therefore, we can replace
the objective function in problem P2 with the social utility:

F({q̄i}ni=1, {p̄i}ni=1, {si}ni=1) =
n∑

i=1

ui(si, s−i). (13)

To maximize the social utility, we analyze the optimization
problem in (13) with a supermodular game with strategic com-
plementarity that motivates clients to increase contribution to
collaboration training. Referring to [35], we give the description
of supermodular game as follows:

Definition 4 (Supermodular Game): The strategic form game
T (Ω, P, u) is a supermodular game if for all players i ∈ Ω:
� Pi = [Pmin, Pmax] is a compact subset of R+,
� ui is continuous in all player strategies P ,
� ui has increasing differences in (Pi, Pj), i.e. ∂2ui

∂Pi∂Pj
≥

0, ∀j �= i, j ∈ Ω.
Next, we transform the social utility maximization problem

into a client collaboration (CC) game problem: Given the set of
clients {ci}ni=1, the strategy set {si}ni=1 of clients, and the utility
set {ui}ni=1, the CC game G can be described as follows:

G = [{ci}ni=1, {si}ni=1, {ui}ni=1] . (14)

Finding a Nash equilibrium (NE) of the CC game is the prereq-
uisite for addressing P2. The definition of NE for the CC game
is given below.

Definition 5: A set of data amount strategies S
∗ =

(s∗1, . . . , s
∗
n) is an NE for the CC game if

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i), ∀si �= s∗i , ∀i ∈ [1, n]. (15)

To find an NE of the CC game, we show that it is a supermod-
ular game with a unique NE.

Lemma 1: The CC game is a Supermodular game with a
unique NE.

Proof: See Appendix B, available online. �
Clients can maximize their own utilities with their optimal

strategies by employing their best response (BR) strategies:

BRi(s−i) = argmax
si

(ui(si, s−i)). (16)

Together with Theorem 1, we can combine the BR strategy with
the iterative search method to find the unique NE. As shown in
Algorithm 1, we first initialize an original state S in line 1. From
line 2 to line 6, we update the strategies and calculate the sum of
utility gap for each client. When the sum of utility gap t is less
than the convergence threshold δ, the set of clients’ strategies is
an NE.

B. Optimal Design of Fair Aggregation Rule

For the model aggregation rule ζ, we focus on finding aggre-
gate weights {qi, pi}ni=1 to realize the fair performance distribu-
tion. According to the relation among these three optimization
variables as shown in Fig. 3, we first find the optimal values
of {pi}ni=1 with fixed {si}ni=1, and then compute the values of
{qi}ni=1.

According to the requirement of ε-UF in (5), a client has more
data samples (i.e., less training loss), which means a greater
contribution to the efficiency of collaboration training. These
clients will get higher weights in parameter gradient aggre-
gation and the trained model will have their preferences, i.e.,
Gi(ω,Di), ∀i ∈ [1, n]. Thus, we regard the objective function
in problem P3 as the sum of testing accuracy on each client’s
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Algorithm 1: Computation of Optimal Weights.

local dataset:

F({qi}ni=1, {pi}ni=1, {s̄i}ni=1) =
n∑

i=1

piGi(ω,Di). (17)

However, it is intractable to address the problem in (17) without
the value of Gi(ω,Di), ∀i ∈ [1, n]. Naturally, if a client trains
the model on more data samples as shown in Fig. 1(a), the model
performance (e.g., inference accuracy) will be higher [36]. Thus,
we utilize the following approximation equation to substitute the
value of Gi(ω,Di) which has been widely used in [37]:

Gi(ω,Di) = 1− e−pi

∑n
j=1 sj , ∀i ∈ [1, n]. (18)

In this way, we can tackle the optimization problem P3 with
reshaped objectives, and the optimal aggregation can be found
as follows:

Theorem 2: Given a set of strategy profiles {si}ni=1 of clients
and a set of fairness thresholds {εi}ni=1, the optimal server ag-
gregation weights that maximize the model performance while
satisfying the utopia fairness are:

pi =
(1− εi)

∑n
j=1 sj + εisi∑n

j=1 sj(
∑n

j=1 sj + si)
, ∀i ∈ [1, n]. (19)

Proof: See Appendix C, available online. �
Although the fair aggregated weights {pi}ni=1 can be cal-

culated using the above method, the approximation value of
Gi(ω,Di) may be far away from the true value which can
only be obtained from the testing data. In order to eliminate the
potential bias, we design a weight attention mechanism which
contains two main steps to calculate the fair aggregation weights.
First, we compute the equality of aggregated global model as the
reference item, which can be described as ωt+1

r =
∑n

i=1 piω
t
i .

Then, with the objective of eliminating bias, we redesign the
attention scheme employed in FedAMP [22] for amendment
aggregation weights. Thus, the attention weights in t-th model

aggregation can be calculated as follows:

qi =
xie

−σ cos(ωt+1
r ,ωt

i)∑n
j=1 xje

−σ cos(ωt+1
r ,ωt

j)
, ∀i ∈ [1, n], (20)

where σ is a hyper-parameter, and cos(ωt+1
r , ωt

i) is the cosine
similarity between the referenced global model and the local
model of client ci.

To sum up, we design Algorithm 1 to compute the optimal
weights with higher collaboration efficiency and utopian fairness
constraint, by working out the sub-problem P3 when given
the fairness threshold ε. As shown in Algorithm 1, we first
find the optimal data samples of each client from line 2 to
line 8. From line 9 to line 10, each client ci substitutes ωt−1

i

as temporal updated model without the optimal data samples.
The next step is to calculating the efficient aggregation weights
{pi}ni=1. In order to eliminate the potential bias, we compute
the fair aggregation weights from line 12 to line 13. The main
computational complexity of Algorithm 1 includes the compu-
tation of NE among all clients from line 2 to line 8, and the
aggregation of model parameters from line 9 to line 13. The
computational complexity of NE computation is O(nδ ), which
depends on the convergence threshold δ and the number of
clientsn. The computational complexity of model aggregation is
O(n), which depends on the number of clientsn. Combined with
these two main computational parts, the computation complexity
isO(nδ + n). In this way, we can conclude that the computational
complexity of the Algorithm 1 is O(nδ ).

C. Efficiency and Convergence of FedUP

Until now, we combine Algorithm 1 to implement the FedUP
framework summarized in Algorithm 2. We first initialize
the values of three sets of variables at the beginning. Dur-
ing the t-th training round, we utilize Algorithm 1 to update
the three sets of variables until they converge, i.e., ({qti}ni=1,
{pti}ni=1, {sti}ni=1) = ({q̄i}ni=1, {p̄i}ni=1, {s̄i}ni=1), and then de-
note the optimal values of these three sets of variables in the
t-th round as the initialized values in the (t+ 1)-th round. As
for the convergence guarantee of FedUP, we prove that the
first subproblem is supermodular game with a unique NE, by
showing that the utility of each client is a strictly concave
function with the second partial derivative of objective function
in (13). Then, we further prove the convexity of the objective
functions in (18) in the proof of Theorem 2, and calculate
the global minimum using KKT condition. According to the
convergence analysis of alternating optimization theory [31], the
optimal value of original problem can be obtained with multiple
iterations optimization by computing the global minimum of
each subproblem.

Next, we first analyze system efficiency of FedUP in terms of
utopian fairness requirements, and then give the convergence
analysis of collaboration training to show the advantage of
FedUP. Considering the heterogeneity among clients, different
clients have vary fairness thresholds {εi}ni=1, and its value
reflects the varying strengths of clients’ fairness requirements.
The following corollary reflects the impact of clients’ fairness
requirements on collaboration efficiency.
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Algorithm 2: Implementation of FedUP.

Corollary 1: Given a set of fairness thresholds {εi}ni=1, each
client i improves the degree of utopia fairness by lowering
εi with a bit τ , where 0 ≤ τ ≤ min{εi}ni=1, the collaboration
efficiency will be improved by at least

√
eτ .

Proof: See Appendix D, available online. �
Before giving the convergence analysis of FedUP, we first

give some notations and assumptions. Let ω∗ denote the optimal
solution to P3, and we introduce the following two commonly
adopted assumptions [38], [39]:
� Assumption 1: The loss function fi(ωi) is μ-strongly

convex:〈�fi(ωi)−�fi(ωj), ωi − ωj〉 ≥ μ‖ωi − ωj‖2,
for any ωi, ωj .

� Assumption 2: Stochastic gradients at the client are un-
biased: Eξi [�̃fi(ωi)] = �fi(ωi), and the second raw
moment of a stochastic gradient for all function fi is
bounded:E‖�̃fi(ωi)‖2 ≤ σ2.

Assuming that the above assumptions are satisfied, we can
derive the following theorem.

Theorem 3: Given any training round t, if both assumptions
1 and 2 hold, the convergence of FedUP satisfies

E
∥∥ωt − ω∗∥∥2 < Ct

0E
∥∥ω0 − ω∗∥∥2 + tC1, (21)

where C0 = 1− μη, and C1 = nση2.
Proof: See Appendix E, available online. �

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
FedUP on both synthetic and real-world datasets.

A. Experiment Setting

Datasets: (i) A Synthetic Dataset: We first consider differ-
ent client number with n ∈ [10, 50] in cross-silo FL. As for
the training cost of each client, we make an assumption that
{ki}ni=1 ∼ N (μ, σ), whereμ = 0.5 is the mean value andσ = 1

TABLE II
THE DETAILS OF TRAINING MODEL IN CROSS-SILO FL

denotes the standard value which controls the level of non-IID.
Similarly, we assume that the initial strategies of clients and
fairness threshold are subject to a random distribution, i.e.,
si ∈ [0, 2] and εi ∈ [0.3, 1], ∀i ∈ [1, n]. In terms of convergence
threshold, we set the value as δ = 0.1 .

(ii) Three Real-world Datasets: Three standard real-world
datasets are utilized to make performance evaluation which have
also been widespread used into related research works:
� FMNIST, which is a large freely available database of

fashion images with labeled subsets of the 80 million tiny
images dataset [40].

� SVHN, which is captured from Google Street View images
and widely used in the field of object detection and pattern
recognition [41].

� GTSRB, which is the german traffic sign recognition dataset
including 43 categories with unbalanced distribution be-
tween the categories [42].

Parameter Detail: For the simple dataset FMNIST, we utilize
MLP with model structure: two Linear layers, one ReLu and
Softmax layer. The learning rate and batch size of model training
is 0.01 and 32. The optimizer and local epochs of gradient update
is SGD and twice. As for the complex dataset GTSRB, we take
CNN with three Conv2d, Maxpool2d and three Linear layers into
consideration. To accelerate the speed of model training, we set
the learning rate of model training on GTSRB is 0.02. Moreover,
on dataset SVHN, we consider Lenet with two Conv2d, three
Linear, one ReLu and Maxpool2d layer. Similarly, the learning
rate and batch size of model training on SVHN is 0.02 and 32
for accelerating model training. In all models, we set the decay
factor and momentum to their default values of 0. We state all
detailed information in Table II.

Baselines: To verify the efficiency of FedUP, we compare it
in detail with the following baselines:
� Ditto, which maintains fairness with the personalization

method by adding the correct item in the loss function with
the hyperparameter λ [26].

� q-FFL, which utilizes α fairness to design a more sophis-
ticated dynamic weighted averaging scheme for perfor-
mance fairness [13].

� FedAvg, which is a prominent algorithm that updates global
model with averaged local gradients, and reduces the com-
munication cost by allowing devices to perform multiple
local updates [43].

� FedProx, which introduces a proximal term into the local
objective function of each client, which helps to stabilize
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Fig. 5. Performance of FedUP on Synthetic Dataset: (a) client’s utility versus data quantity; (b) data quantity versus fairness threshold; (c) client’s utility versus
fairness threshold; (d) social utility versus fairness threshold and the number of clients.

Fig. 6. The performance of the compared frameworks on FMNIST: (a) Average Accuracy; (b) Training Loss; (c) Fairness.

the training process and prevent the local models from
deviating too far from the global model [44].

Non-IID Data: We realize fixed non-IID data distribution by
utilizing the sampling method called sort-and-partition. Every
dataset has different label amount, and the whole dataset will be
sorted on the label category. Then, any dataset will be divided
into much different shards, and each client has her corresponding
shards with different labels, while every shard is randomly
selected from data partitions sorted by labels. As for varying
non-IID data distribution, we employ Dirichlet distribution to
characterize the identicalness among clients as shown in pre-
vious studies [45], [46]. Specifically, we sample a Dirichlet
distribution Dir(κb) for different non-IID data distributions,
where b characterizes the prior class distribution and κ is a
concentration parameter. With κ → ∞, all clients have identical
distribution to the prior, while κ → 0 is the other extreme.

B. Results on Synthetic Dataset

Fig. 5 presents the comparison of the utility and data quantity
for clients using the synthetic dataset. As can be seen from
Fig. 5(a), the utility distribution of clients is similar to the
distribution of the amount of their contributed data, which means
that a client who contributes more to model collaboration will
receive more reward. In this way, utopian fairness is satisfied,
thereby incentivizing cooperative behavior from selfish clients.
From Fig. 5(b) to (d), we change the fairness thresholds of UF,
where τ = 0.2 means higher fairness appeal, and τ = 0 means
more relaxed fairness requirement. In Fig. 5(b) and (c), with the
relaxation of the utopian fairness thresholds, both the client’s
utility and the amount of data she contributes will increase
accordingly. In Fig. 5(d), we further consider the number of

clients, increasing the number of clients from 10 to 50, showing
that the server’s utility increases with the number of clients and
the thresholds of utopian fairness. According to the experimental
results of FedUP on synthetic datasets, we are surprised to find
that FedUP makes a tradeoff between fairness and efficiency
with the constraint of novel UF and multiple alternating opti-
mization.

C. Results on Real-World Datasets

Before giving the description of performance comparison
on real-world datasets, we first explain that how to collect the
experimental results in the next figures. The plots from Figs. 6
to 8 are simulated with 3 different seeds which means that each
experiment is run three times and then averaged. For the best
viewing experience, we further utilize the moving average over
a window length of 3 in the average accuracy and training loss.
In these figures, the solid lines is the average value of three
experiments with different seeds, and the shaded areas means
the standard deviation values.

All plots from Fig. 6(a) to (c) describe the average accuracy,
training loss and fairness of the compared frameworks on the
real-world dataset FMNIST. As the number of training rounds
increases, the average accuracy increases rapidly at first, then
slows down until convergence. It is obvious that FedUP has
better convergence speed and model performance than the other
four baselines. The main reason behind this phenomenon is that
FedUP incentivizes data quantity with unit reward to improve
the efficiency of collaboration training, so that useful gradients
retain higher weight during parameter gradient aggregation.
However, there is a large gap in model performance between
these methods on three different real-world datasets, especially
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Fig. 7. The performance of the compared frameworks on SVHN: (a) Average Accuracy; (b) Training Loss; (c) Fairness.

Fig. 8. The performance of the compared frameworks on GTSRB: (a) Average Accuracy; (b) Training Loss; (c) Fairness.

Fig. 9. The performance of the compared frameworks with different client number on: (a) FMNIST; (b) SVHN; (c) GTSRB.

on FMNIST and other two dataset. On FMNIST, the model
performance gap between these compared frameworks is not
obvious due to the simplicity of the dataset itself. The second
one in Figs. 6(b), 7(b) and 8(b), plots the training loss of the three
compared frameworks, and the results obtained are basically the
same as the average accuracy, and the reason is basically the
same. The major difference is that the training loss of FedUP
has obvious advantages compared to Ditto, q-FFL, FedAvg and
FedProx, which just reflects the better actual performance of
FedUP. Again, the model performance gap is very noticeable
on more complex dataset GTSRB than others. As for the third
one in Figs. 6(c), 7(c) and 8(c), the mean values of FedUP is
bigger than the others which means the high efficiency of FedUP,
and the height of each distribution figure means the variance of
performance among the all clients which shows that FedUP has
more fair performance distribution.

D. Performance Against Intrinsic Parameters

To validate the feasibility of FedUP, we performed the corre-
sponding experiments of the parallelism of the client. Fig. 9

plots the average accuracy of the compared frameworks on
FMNIST, SVHN and GTSRB against the intrinsic parameter of
client number. As shown in Fig. 9(a) with FMNIST, the average
accuracy increases with the client number, and FedUP has better
model performance than FedAvg, Ditto and q-FFL. In Fig. 9(b)
with SVHN, we find that the average accuracy also increases
with local epochs, and the comparison result is similar with
the first one in Fig. 9(a). However, the training performance
of FedUP decreases about 10% due to the difference between
FMNIST and SVHN. Similar with FMNIST and SVHN, we can
further validate the improved averaged accuracy of FedUP with
the client number increasing, and the gap of averaged accuracy
is obvious among FedUP, Ditto, q-FFL, FedAvg and FedProx,
no matter what parameters selected. The primary reason is that
as the number of clients increases and competition intensifies,
FedUP utilizes utopian fairness to incentivize clients to enhance
their contributions. In contrast, other methods fail to consider fair
incentives for participants, which leads to free-riding behavior
when there are too many participants.

Fig. 10 plots the average accuracy of the compared frame-
works on three different datasets against intrinsic parameter:
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Fig. 10. The performance of the compared frameworks on: (a) Local Epoch; (b) Batch Size; (c) Communication Round.

Fig. 11. The performance of the compared frameworks with varying degree
of data heterogeneity on: (a) Average Accuracy; (b) Training Loss.

local epochs, batch size and communication round. As shown in
Fig. 10(a), the average accuracy increases with the local epoch
similarly, and FedUP has better model performance than both
Ditto and q-FFL. The second one is about the experimental
analysis of batch size in Fig. 10(b), and we find that the value of
the batch size significantly impacts the prediction accuracy of
various FL algorithms differently. With the increasing of batch
size, the prediction accuracy of FedUP initially declines and then
experiences an upward trend, whereas the others consistently
decrease. The third one represents the results of communication
round in Fig. 10(c), and it is obvious that the prediction accuracy
increases with the communication round.

We further explore the impact of non-IID degree in Fig. 11,
and validate the robustness of FedUP on varying degree of data
heterogeneity scenario by setting the value of concentration
parameter κ (κ = 0.1, 1.0, 10). It is easy to observe that FedUP
has better performance than the other four baselines in terms of
both average accuracy and training loss. Next, we focus on the
impact of non-IID degree and dynamic participation in Fig. 12.
In the Fig. 12(a) and (b), we can find that compared to the lower
non-IID data distribution scenario, the model performance
in the higher non-IID settings is generally lower, and the
challenges for balancing fairness and efficiency is much harder.
To evaluate the model performance of FedUP in dynamic client
availability scenario, we design the following three settings of
client availability: No Dropout, 30%Dropout and 50%Dropout.
No Dropout means that all clients are available in federated
collaboration, and 30% Dropout indicates that 30% of all clients
are unavailable due to some factors, e.g., communication delay
or energy consumption. In Fig. 12(c) and (d), we find that the
performance of FedUP degrades with more client unavailable.

Fig. 12. The robustness of FedUP on: (a) average accuracy of varying non-IID
data; (b) training loss of varying non-IID data; (c) average accuracy of dynamic
participation; (d) training loss of dynamic participation.

In this work, we focus on the static client participation problem
which is highly complex and challenging, and our proposed
FedUP has efficient model performance. As for the dynamic
client availability problem, it fundamentally differs from the
problem addressed in this paper, and we will further work
out the dynamic client availability problem in the future
work.

In order to further validate the performance of FedUP, the
compared frameworks are simulated with more 3 different seeds
which means that each experiment is run three times and then
averaged. Table III lists the mean and standard deviated value
of the prediction accuracy and training loss, where the first
one of numbers in each cell represents the mean, and the second
one represents the standard deviated value. What’s more, the
optimal value of each one is emphasized in bold for easy-reading,
and we can find that the most optimal values on three different
datasets are in the last row, which means that the FedUP has
better performance than both Ditto, q-FFL FedAvg and FedProx,
no matter the training efficiency and the performance fairness.
Therefore, our proposed framework FedUP has been compre-
hensively improved in both fairness and efficiency.
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TABLE III
THE PERFORMANCE VALIDATION ON EFFICIENCY AND FAIRNESS AMONG FIVE COMPARED FRAMEWORK WITH THREE DIFFERENT DATASET

VII. CONCLUSION

In this paper, we have developed a novel collaborative frame-
work, FedUP, to bridge efficiency and fairness in cross-silo FL.
To achieve the optimal design of FedUP, we have modeled the
collaboration training process in FedUP as a supermodular game
with strategic complementarity to incentivize clients to improve
collaborative efficiency, and designed a weight attention mech-
anism to compute fair aggregation weights by minimizing the
performance bias among heterogeneous clients. Particularly, we
have theoretically proved that FedUP has fair model perfor-
mance with a lower bound guarantee of convergence. Finally,
we have conducted extensive performance evaluations on both
a synthetic datasets and three real-world datasets to further
demonstrate the efficacy of FedUP in terms of fairness and
efficiency, compared to both Ditto and q-FFL.
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