
From Expansion to Retraction: Long-tailed Machine Unlearning
via Boundary Manipulation

Min Chen
Hubei Key Laboratory of Internet of
Intelligence, School of EIC, Huazhong
University of Science and Technology

Wuhan, China
chenmin7@hust.edu.cn

Weizhuo Gao
Hubei Key Laboratory of Internet of
Intelligence, School of EIC, Huazhong
University of Science and Technology

Wuhan, China
wzgao@hust.edu.cn

Chen Wang
Hubei Key Laboratory of Internet of
Intelligence, School of EIC, Huazhong
University of Science and Technology

Wuhan, China
chenwang@hust.edu.cn

Gaoyang Liu∗
Hubei Key Laboratory of Internet of
Intelligence, School of EIC, Huazhong
University of Science and Technology

Wuhan, China
liugaoyang@hust.edu.cn

Ahmed M. Abdelmoniem
School of Electronic Engineering and

Computer Science, Queen Mary
University of London

London, UK
ahmed.sayed@qmul.ac.uk

Kai Peng
Hubei Key Laboratory of Internet of
Intelligence, School of EIC, Huazhong
University of Science and Technology

Wuhan, China
pkhust@hust.edu.cn

Abstract
Machine unlearning aims to remove the information of specific
data from a trained machine learning model while retaining its
utility for the remaining data, so as to meet the requirements of
privacy regulations. Existing unlearning methods often assume a
balanced data distribution, but neglect the real-world, long-tailed
scenarios, where the decision boundaries of tail classes are fre-
quently distorted due to insufficient sample representation, thereby
reducing the unlearning efficacy. In this paper, we propose the first
Long-Tailed Machine Unlearning (LTMU) framework from a uni-
fied decision-boundary perspective. Our framework begins with
a directional boundary repair scheme designed to enrich the dis-
torted decision boundary of the tail class, and then develop a novel
boundary retraction approach tailored for long-tailed unlearning,
dispersing both the augmented and original features throughout
the feature space. This bidirectional manipulation not only offers
a unified interpretation of the relationship between long-tailed
learning and unlearning, but also enables flexible control over both
repair and unlearning processes through the generation of aug-
mented features, thereby effectively accomplishing the long-tailed
unlearning task. Extensive experiments across multiple datasets
and neural network architectures demonstrate the effectiveness of
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our framework in achieving complete unlearning of tail classes in
long-tailed distributions.

CCS Concepts
• Computing methodologies→Machine learning; • Security
and privacy→ Information accountability and usage control;
Usability in security and privacy.

Keywords
Machine unlearning, long-tailed learning, directional boundary
repair, boundary retraction.

ACM Reference Format:
Min Chen, Weizhuo Gao, Chen Wang, Gaoyang Liu, Ahmed M. Abdel-
moniem, and Kai Peng. 2025. From Expansion to Retraction: Long-tailed
Machine Unlearning via Boundary Manipulation. In Proceedings of the 31st
ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2
(KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3711896.3736970

1 Introduction
Machine unlearning focuses on the removal of specific informa-
tion from a well-trained machine learning model while preserving
its utility on the remaining data [38]. The need for unlearning
arises from various concerns, including privacy regulations such
as GDPR [34] and CCPA [10], security vulnerabilities like model
poisoning attacks [25], and the requirement to eliminate outdated
or erroneous data from models to maintain their relevance and
accuracy [13]. As a result, machine unlearning has garnered great
research interests in recent years.

However, existing machine unlearning methods often rely on the
assumption that the training data follows a balanced distribution.
This assumption, however, may not hold in some practical scenar-
ios like face attribute prediction and person re-identification [19],
where imbalanced data distributions are common. Such imbalance
weakens the generalization capabilities of classes represented by
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(a) Repairing decision boundary (b) Boundary manipulation

Figure 1: Illustration of decision boundary manipulation in
long-tailed learning and unlearning. (a) Long-tailed learning
techniques aim to repair (blue arrows) the distorted boundary
(blue dashed lines) of tail classes (green dots) by generating
augmented features (green circles). (b) Unlearning is achieved
by first expanding the boundary (blue solid lines) and then
dispersing (red arrows) the feature space of the tail class. Best
viewed in color.

fewer samples, thereby limiting the efficacy of current unlearning
methods in removing data associated with these tail classes1.

To address the issue of imbalanced training data distribution,
information augmentation has been widely adopted in long-tailed
learning, which generates additional augmented features by fitting
the statistical distribution of the tail classes [41]. Since insufficient
features may fail to adequately represent the full feature space of
the tail classes, these augmented features are then used to repair the
distorted decision boundaries of the tail classes during the original
training phase (c.f. Figure 1a).

However, current augmentation approaches [28, 41] often over-
look the intrinsic similarities between tail classes and their neigh-
boring classes [6], and generate more augmented samples for tail
classes. This inconsiderate augmentation process risks blurring the
decision boundaries of the remaining classes, which would poten-
tially compromise their remaining data’s utility in the unlearned
model. For instance, in Figure 1b, class 𝑓 is more semantically sim-
ilar to class 𝑟2 than to class 𝑟1, suggesting that the augmented
features of 𝑓 near 𝑟2 should be more compact than on other sides.
Ignoring this inter-class similarity may cause these augmentations
for the tail class (green circles) to encroach upon the feature space
of neighboring classes (yellow dots). Consequently, current aug-
mentation methods may hinder the preservation of remaining data
utility, which is a key objective in unlearning task.

In this paper, we propose the Long-Tailed Machine Unlearning
(LTMU) framework from a unified decision-boundary perspective,
by first expanding the decision boundary outward in the repair
phase, and then contracting it inward during the unlearning phase
(c.f. Figure 1b). Specifically, our framework begins with a directional
boundary repair scheme designed to enrich the distorted decision
boundary of the tail class, guided by intrinsic inter-class similarities.
This scheme carefully preserves similarity relationships among
neighboring classes by identifying the top 𝑘 most similar classes
and generating augmented features directed toward them. These

1Categories with sufficient samples are referred to as head classes, while those with
few samples are known as tail classes.

tailored augmentation features can thus efficiently and accurately
enhance the representational capacity of the tail classes.

On this basis, we further propose a novel boundary-retraction
approach tailored for long-tailed unlearning, by retracting the deci-
sion boundary of the tail class away from the nearest neighboring
classes. In contrast to prior unlearning method [6], which use adver-
sarial labels to guide boundary retraction, our approach leverages
the inter-class similarity calculated during the repair phase to dis-
perse both the augmented and original features throughout the
feature space, offering greater time efficiency. By doing so, our
framework can unify the repair and unlearning processes into a
bidirectional outward-inward manipulation of the decision bound-
ary throughout the feature space. This bidirectional manipulation
not only offers a unified interpretation of the relationship between
long-tailed learning and unlearning, but also enables flexible control
over both processes through the generation of augmented features,
thereby effectively accomplishing the long-tailed unlearning task.

Our major contributions can be summarized as follows:
• We introduce LTMU, the first unlearning framework for re-
moving a tail class from a deep model trained on imbalanced
data. Through a tailored bidirectional boundary manipula-
tion, our approach can fully erase the tail class while main-
taining the utility of the remaining classes.
• We design a directional boundary repair scheme by generat-
ing augmented features of the tail class that can preserve the
intrinsic inter-class similarity. The generated features can
be then used to expand outward the decision boundary of
the tail class, yielding greater representation diversity of the
tail class.
• We develop a boundary retraction approach, by retracting
the decision boundary of the tail class inward the nearest
classes, to efficiently and effectively disperse the tail class
features.
• Extensive experiments on four datasets across various neural
network architectures validate the proposed LTMU frame-
work, demonstrating its effectiveness in unlearning tail classes
under long-tailed distribution settings. Our code is available
at https://github.com/SPHelixLab/LTMU

2 Related Work
2.1 Machine Unlearning
Machine unlearning techniques are broadly divided into certified
and approximate approaches [38]. Certified unlearning ensures
that the parameter distribution in the unlearned model is indis-
tinguishable from that of the retrained model, thus guaranteeing
strong theoretical correctness. Early works focus on convex mod-
els [2, 4, 14, 17], but struggle to scale to deep neural networks.
Recent efforts like SISA [1] and Amnesiac Unlearning [16] optimize
exact unlearning for deep models, using partitioned sub-models or
parameter tracking to remove specific training information. How-
ever, these approaches disrupt the original training pipeline, require
extensive memory, and may compromise model utility.

Approximate unlearning methods aim for inference behaviors in
the unlearned model to approximate those in a retrained model. Re-
cent approaches leverage neural network characteristics to achieve
efficient unlearning. For example, Fisher forgetting [15] identifies

https://github.com/SPHelixLab/LTMU
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Figure 2: Schematic overview of the proposed LTMU framework, illustrating the key stages: identifying boundary samples,
generating directional augmented features, and performing boundary repair and retraction. The augmented features are used
to repair the distorted decision boundary of the tail class, while the combination of augmented and original features enables
boundary retraction, ensuring comprehensive unlearning of the tail class.

influential parameters for forgetting data and alters themwith noise.
SCRUB [22] enforces a constraint on the KL-divergence between
the output distributions of a student model and a teacher model for
both the remaining and forgetting data, updating the parameters
accordingly to achieve unlearning. UNSC [5] employs null-space
projection to isolate forgetting information, while Boundary Un-
learning [6] compresses the decision space of the forgetting class.
Similarly, L1-sparse unlearning [24] uses model sparsity to simplify
forgetting by fine-tuning with 𝑙1 regularization, and SalUn [12]
applies hard thresholding to erase sensitive information.

Nevertheless, nearly all existing unlearning methods are built
on the assumption of balanced datasets, making them challenging
to apply in long-tailed settings.

2.2 Boundary Repairing Methods
Boundary repair techniques for long-tailed learning share a similar
augmentation concept of generalization ability of tail class with our
long-tailed unlearning task. For instance, Yin et al. [39] generate ad-
ditional features for tail classes by leveraging variation information
from head classes, and then optimize the model with these addi-
tional tail features to reduce the decision boundary bias. Similarly,
RSG [35] proposes using a fully parameterized layer to capture
variation information, enabling the generation of more stable and
representative augmented samples for tail classes. Ma et al. [28]
focus on transferring the variance from head classes, estimating
multiple sub-distributions centered on each tail class feature to
more accurately represent the tail class. Furthermore, FASA [41]
generates tail features based on a distributional prior, with sta-
tistics calculated from previously observed tail samples. Recently,
Ma et al. [27] investigate the impact of the curvature of perceptual
manifolds, which represent second-order properties of the decision
boundary [29], to analyze model bias in long-tailed settings.

While these methods generate augmented tail features to repair
the distorted decision boundaries of tail classes, they lack the ability
to capture inter-class similarity, which is crucial for preserving the
utility of the remaining data in the unlearning context. Moreover,
integrating existing boundary repair methods with most unlearning

approaches is challenging, as these methods either do not utilize
the forgetting data or do not require the computation of the feature
space. This highlights the need for our unified boundary-based
framework. Our LTMU integrates repair and unlearning as manipu-
lations of the decision boundary across the feature space, which can
achieve more efficient long-tailed machine unlearning performance.

3 Method
We consider long-tailed machine unlearning within the context of
supervised classification using deep networks. LetD = (𝒙𝑖 ,𝒚𝑖 )𝑁𝑖=1 ⊆
X×Y represent the training dataset used to train the original model
M𝑜 . The label spaceY = {1, ...,𝐶} consists of𝐶 categories. Our aim
is to remove the information of forgetting data D𝑓 ⊂ D from the
original modelM𝑜 , while retaining the knowledge of remaining
dataD𝑟 =D \D𝑓 . The unlearned modelM𝑢 is expected to closely
resemble the retrained modelM𝑟 , which is trained exclusively on
the remaining data D𝑟 .

To this end, our LTMU framework mainly consists of the fol-
lowing two steps (c.f. Figure 2): (1) Repairing of decision boundary,
which repairs the decision boundary of the tail class using direc-
tional augmented features, guided by the similarity between the
tail class and its neighboring classes; (2) Forgetting with boundary
retraction, which retracts the repaired boundary away from the
nearest remaining class, dispersing these features across the feature
space to ensure comprehensive unlearning of the tail class.

3.1 Repairing of Decision Boundary
The first step is to repair the decision boundaries distorted by the
limited sample size of tail classes, which aims to produce diverse
features for the tail class, thereby expanding its feature space to
facilitate complete removal in the subsequent unlearning phase. To
analyze the relationship between the repair and unlearning in long-
tailed setting, we primarily focus on the geometric effects of tail
class unlearning through information augmentation techniques.

One significant distinction between long-tailed learning and
unlearning methods lies in their application phases: long-tailed
learning is applied during the training phase, while unlearning
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Algorithm 1 Binary Search

Require: The original modelM, input feature 𝒛, target centroid
c, and threshold 𝜃 .

Ensure: Boundary feature 𝒛.
1: Set 𝒛𝑡𝑎𝑟𝑔𝑒𝑡 ← c and 𝒛𝑜𝑟𝑖𝑔𝑖𝑛 ← 𝒛;
2: while | |𝒛𝑡𝑎𝑟𝑔𝑒𝑡 − 𝒛𝑜𝑟𝑖𝑔𝑖𝑛 | | > 𝜃 do
3: Set 𝒛𝑚𝑖𝑑 ←

𝒛𝑡𝑎𝑟𝑔𝑒𝑡+𝒛𝑜𝑟𝑖𝑔𝑖𝑛
2 ;

4: ifM(𝒛𝑡𝑎𝑟𝑔𝑒𝑡 ) =M(𝒛𝑚𝑖𝑑 ) then
5: Set 𝒛𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝒛𝑚𝑖𝑑 ;
6: else
7: Set 𝒛𝑜𝑟𝑖𝑔𝑖𝑛 ← 𝒛𝑚𝑖𝑑 ;
8: end if
9: end while
10: 𝒛 ← 𝒛𝑡𝑎𝑟𝑔𝑒𝑡 ;
11: return 𝒛;

operates as a post-processing step. This difference underscores the
importance of retaining information from the remaining data, D𝑟 ,
especially after repairing the distorted boundaries of tail classes
in the unlearning process. Information augmentation techniques
widely used in long-tailed learning can disrupt inter-class simi-
larity [20], which may adversely impact the utility of neighboring
classes. To address this issue, we propose a novel directional feature
augmentation method that can preserve the inherent similarities be-
tween categories. Specifically, we generate compact augmented fea-
tures that guide the original tail samples toward closer neighboring
classes, while dispersing features toward more distant neighboring
classes. This approach preserves essential inter-class relationships
and maintains the integrity of the feature space.

Specifically, we first calculate the category centroids c for each
class to capture the intrinsic inter-class similarity. To accurately
obtain c in mini-batch data, we adopt the simple moving average
algorithm [40]:

c𝑗 =
∑
𝒛 𝑗

𝑁 𝑗

,

c𝑙𝑗 = (1 − 𝛾)c𝑙𝑗 + 𝛾c
(𝑙−1)
𝑗

,

(1)

where c𝑗 is the centroid of class 𝑗 , 𝑁 𝑗 represents the number of
samples in class 𝑗 , 𝑙 is the batch index and 𝛾 is the moving average
coefficient. We denote the feature embedding of a sample 𝒙𝑖 as
𝒛𝑖 = 𝐸 (𝒙𝑖 ), where 𝐸 represents the feature extractor within a deep
network. For each feature 𝒛𝑖 in the tail class, we then identify the 𝑘
closest centroids,

c𝑘 = Top-𝑘{dist(c𝑗 , 𝒛𝑖 ∈ D𝑓 ) | 𝑗 = 1, . . . ,𝐶}, (2)

where dist(·) represents a similarity metric. In our scheme, Eu-
clidean distance is sufficient for effective performance.

To guide the direction and control the compactness of the aug-
mented features, we introduce the boundary features [23] posi-
tioned at the decision boundaries. Generating augmented features
along the vectors extending from tail features to boundary features
introduces greater representation diversity, helping to correct the
distorted decision boundary of the tail class more effectively (c.f.
Figure 2). Moreover, the distance between original features and
their respective boundary features regulates the compactness of the

Algorithm 2 Augmented Feature Generation

Require: The original modelM, unlearning dataD𝑓 = (𝒙𝑖 ,𝒚𝑖 )𝑚𝑖=1,
nearest class 𝑘 , class centroids c, feature extractor 𝐸 and aug-
mented number for each sample 𝑁 .

Ensure: Generated augmented data D𝑎𝑢𝑔 .
1: for 𝒙 in D𝑓 do
2: Generate feature 𝒛 = 𝐸 (𝒙);
3: Select nearest 𝑘 centroids c𝑘 = Top-𝑘{dist(c𝑗 , 𝒛) | 𝑗 =

1, . . . ,𝐶};
4: for 𝑖 in 𝑟𝑎𝑛𝑔𝑒 (𝑘) do
5: Find boundary feature 𝒛 ← 𝐵𝑖𝑛𝑎𝑟𝑦𝑠𝑒𝑎𝑟𝑐ℎ(𝒛, c𝑖 ,w);
6: for 𝑗 in 𝑟𝑎𝑛𝑔𝑒 (𝑁 ) do
7: Calculate step 𝒔 ← 𝒛̄−𝒛

𝑀
;

8: Generate augmented feature 𝒛̂ ← 𝒛 + 𝑗 × 𝒔;
9: D𝑎𝑢𝑔 ← D𝑎𝑢𝑔 ∪ {𝒛̂,𝒚𝑐𝑖 };
10: end for
11: end for
12: end for
13: return 𝒛;

augmented features, preserving inter-class similarity and thereby
maintaining the utility of D𝑟 throughout the unlearning process.

To locate the boundary features 𝒛, we use a simple binary search
method (c.f. Algorithm 1). The step size for generating augmenta-
tion features is given by dist(𝒛̄ 𝑗 −𝒛𝑖 )

𝑀
, where 𝑀 is the total number

of augmentation steps. The augmentation features 𝒛̂ can be then
expressed as:

𝒛̂ 𝑗 = 𝒛𝑖 +𝑚 ×
dist(𝒛 𝑗 − 𝒛𝑖 )

𝑀
,𝑚 = 1, . . . , 𝑀, (3)

where𝑚 represents each incremental step taken in the direction
towards the boundary, dividing the distance into𝑀 equal segments
for generating augmented features.

So far, the augmented features for the tail class have been gener-
ated to repair its distorted decision boundary. The entire process
is outlined in Algorithm 2. It is important to note that the repair
process is carried out by finetuning the original model using both
the original tail samples and the generated augmented features.
Additionally, we combine this repair process with the subsequent
unlearning process into a unified loss function.

3.2 Forgetting with Boundary Retraction
Following the generation of directional augmented features, we
proceed to integrate them with the original features to achieve
comprehensive forgetting of the targeted tail class. As revealed by
a recent unlearning method, Boundary Shrink [6], the forgetting
class can be removed by dispersing them across the feature space.
This motivates us to approach our unlearning process from the
perspective of decision boundary manipulation. We define class
unlearning as the redistribution of the feature space of the forget-
ting class to the most similar neighboring classes. Therefore, we
accomplish the forgetting of tail class by retracting the decision
boundary between the tail class and its neighboring classes within
the feature space.

However, this process faces two critical challenges: determining
the placement of augmented features and setting the directions
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for boundary retraction. Our directional repair scheme effectively
addresses the positioning of augmented features, ensuring thor-
ough unlearning of the tail class. Intuitively, samples from the
tail class exhibit similarities to different neighboring classes, so
we identify the 𝑘 nearest neighboring classes for each tail sam-
ple, aiming to enhance the generalization capability of the tail
class. For boundary retraction directions, unlike Boundary Shrink,
which identifies neighboring classes using adversarially generated
predictions, we leverage inter-class similarity based on Euclidean
distance—computed during the repair phase—to guide boundary
retraction in a structured and efficient way. The redistribution of
the feature space is achieved by retracting the decision boundary of
the tail class, which involves pushing samples across the decision
boundary. The direction for boundary retraction for each tail and
augmented feature is then determined by:

𝒚nearest
𝑖 = Top-1{dist(c𝑗 , {𝒛̂𝑖 , 𝐸 (𝒙𝑖 )} ∈ D𝑓 ) | 𝑗 = 1, . . . ,𝐶}, (4)

where {𝒛̂𝑖 , 𝐸 (𝒙𝑖 )} represents a set of features derived from the orig-
inal tail sample 𝒙𝑖 and the augmented features 𝒛̂𝑖 . Here, 𝐸 denotes
the feature extractor of the model.

Thus, with a unified geometric interpretation of long-tailed learn-
ing and unlearning, we further enhance the efficiency of our un-
learning by reusing the inter-class similarity. To retract the decision
boundary of the forgetting tail class, we fine-tune the tail class sam-
ples toward the label of respective nearest neighboring class as:

L𝑢𝑛𝑙𝑒𝑎𝑟𝑛 = L({𝒛̂𝑖 , 𝐸 (𝒙𝑖 )},𝒚nearest
𝑖 ;w0), (5)

where L denotes a standard loss function (e.g., cross-entropy in
our case). Finally, this boundary retraction process can effectively
ensure comprehensive forgetting of the tail class, while preserving
the utility of the remaining classes.

4 Experiments
4.1 Experiment Setups
4.1.1 Datasets. Weperform our experiments on twowell-established
long-tailed benchmarks: CIFAR10-LT andCIFAR100-LT. These bench-
marks are derived from the balanced versions of CIFAR10 and CI-
FAR100 by applying an exponential decay function 𝑛 = 𝑛𝑖𝜌

𝑖 [3],
where 𝑖 represents the class index (0-indexed), 𝑛𝑖 is the original
quantity of training images and 𝜌 is the imbalanced factor defined
by 𝜌 = 𝑁𝑚𝑎𝑥/𝑁𝑚𝑖𝑛 . Both datasets are segmented into three distinct
training datasets, each exhibiting varying levels of imbalance with
factors of [100, 50, 10]. We primarily employ an imbalance factor
of 𝜌 = 100 to evaluate the efficacy of our unlearning approach
under long-tailed conditions. Note that the original CIFAR10 and
CIFAR100 datasets consist of 50,000 training images and 10,000
validation images, each with a resolution of 32 × 32 pixels. CIFAR10
contains 10 classes, while CIFAR100 comprises 100 classes.

We also adopt two widely used person re-identification datasets:
MSMT17 [37] and DukeMTMC-ReID [43]. To study the difference
of unlearning performance between head class and tail class, we
construct two long-tailed datasets based on the original person
ReID datasets. We classify the classes by ranking them according to
the quantity of their samples. Specifically, the top 20 identities are
designated as the head class, whereas the bottom 50 identities are
considered as the tail classes. Consequently, the MSMT17 dataset

presents an imbalance factor of 74.2, and the DukeMTMC-ReID
dataset shows an imbalance factor of 71.0. Similarly, in the case of
the CIFAR10-LT dataset, we pick the top 2 classes to be the head
class and the last 2 classes to be the tail class. For the CIFAR100-LT
dataset, the top 5 classes are selected as the head class and the last
10 classes are regarded as the tail class.

4.1.2 Evaluation Metrics. To evaluate the effectiveness of the un-
learning methods, we use several metrics in line with the recent
work [12], including unlearning accuracy (UA), unlearning test
accuracy (UTA), remaining accuracy (RA), remaining test accu-
racy (RTA), attack success rate (ASR) of membership inference
attack (MIA) on D𝑓 , and run-time efficiency (RTE). In particular,
UA measures the accuracy of the unlearned model on D𝑓 , while
UTA evaluates its accuracy on test data belonging to the forgetting
class, denoted as D𝑓 𝑡 . RA assesses the model’s performance on
D𝑟 , indicating its ability to retain utility for D𝑟 . RTA, in contrast,
evaluates the generalization capacity of the unlearned model on
the remaining test data, denoted as D𝑟𝑡 . Together, these accuracy
metrics assess the utility preservation of the unlearning approach,
ensuring that while the forgetting class utility is reduced, the per-
formance on the remaining classes is retained. Moreover, ASR of
MIA offers a measure of privacy guarantee, assessing whether mem-
bership inD𝑓 can be detected through the unlearned model, which
indicates the probability that a sample intended for forgetting is
recognized as part of the training set. For an effective unlearning
process, ASR should align closely with that of a model retrained
without D𝑓 . Finally, RTE quantifies the time efficiency of the un-
learning process, enabling comparison of the runtime performance
across different unlearning methods.

4.1.3 Baselines. The following baselines are used for comparisons:
Retrain: Retraining from scratch without using the forgetting data,
serving as the gold standard model that all unlearned models should
approximate.
1) Finetune (FT) [36]: Finetuning the model onD𝑟 for a few epochs
to induce catastrophic forgetting, producing the unlearned model.
2) Random Labels (RL) [15]: Finetuning the model by randomly
re-labeling samples from D𝑓 to disrupt the influence of D𝑓 on the
model.
3) Gradient Ascent (GA) [32]: Training the model on D𝑓 using
gradient ascent to reverse the learned information.
4) L1-Sparse (L1) [24]: Finetuning the model on D𝑟 while applying
an 𝑙1 regularizer to eliminate information associated with D𝑓 .
5) Bad Teacher (BT) [7]: Using selective knowledge distillation to
transfer only the information from 𝐷𝑟 into the unlearned model.
6) Boundary Shrink (BS) [6]: Shrinking the feature space of D𝑓 by
moving the decision boundaries towards the nearest neighboring
class.
7) SalUn (SU) [12]: Removing parameters highly influenced by D𝑓

through hard thresholding based on saliency maps.

4.1.4 Implementations. We use PyTorch for training on GeForce
RTX 4090 GPUs. We adopt the ResNet-18 (resp. ResNet-34) architec-
ture for CIFAR10-LT (resp. CIFAR100-LT), and both models undergo
200 training epochs with Stochastic Gradient Descent (SGD), em-
ploying a momentum of 0.9, a weight decay of 5e-3, and a cosine
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Table 1: Performance of different unlearning methods on CIFAR10-LT and MSMT17 across two unlearning scenarios. The
results are given by 𝑎(±𝑏), where 𝑎 denotes the mean value, 𝑏 denotes the standard deviation over 5 independent trails. The most
outstanding unlearning performance for each method is emphasized with bold text, while the second-best is distinguished
with an underline.

Dataset Method
Head class Tail class

UA UTA RA RTA ASR UA UTA RA RTA ASR

ResNet-18
on

CIFAR10-LT

Retrain 0.00 0.00 100.00 77.12 0.47 0.00 0.00 99.55 79.63 0.66
FT 0.00 0.00 96.75(± 0.03) 76.71(±1.55) 0.20(±0.02) 44.20(±1.19) 10.45(±1.65) 98.61(±0.58) 71.11(±4.32) 0.38(±0.05)
RL 0.00 0.00 91.92(±0.15) 71.44(±1.52) 0.29(±0.05) 33.82(±4.18) 5.40(±2.30) 99.39(±0.25) 75.90(±0.94) 0.34(±0.04)
GA 5.45(±3.19) 3.95(±2.45) 91.86(±0.65) 72.14(±4.46) 0.38(±0.03) 33.22(±4.79) 5.40(±2.30) 98.91(±0.21) 75.92(±0.95) 0.34(±0.04)
L1 7.22(±1.10) 7.65(±3.25) 95.45(±0.50) 78.57(±1.14) 0.05(±0.03) 0.00 0.00 99.78(±0.11) 75.39(±0.46) 0.69(±0.05)
BT 0.00 0.00 92.15(±0.92) 70.95(±0.32) 0.34(±0.07) 46.66(±5.34) 25.15(±1.15) 98.79(±0.87) 74.43(±2.33) 0.06(±0.03)
BS 0.00 0.00 91.91(±3.93) 64.37(±1.17) 0.50(±0.08) 39.84(±6.16) 12.28(±3.75) 99.85(±0.35) 79.39(±1.10) 0.60(±0.10)
SU 0.06(±0.01) 0.83(±0.15) 97.12(±0.23) 75.49(±1.31) 0.49(±0.05) 8.58(±2.01) 3.90(±0.74) 99.17(±0.28) 81.52(±1.47) 0.64(±0.06)

Ours 0.06(±0.01) 0.05(±0.01) 92.28(±0.29) 79.39(±1.41) 0.51(±0.09) 0.00 0.10(±0.05) 99.46(±0.45) 81.78(±2.14) 0.68(±0.09)

ResNet-50-IBN
on

MSMT17

Retrain 0.00 0.00 99.56 95.53 0.51 0.00 0.00 99.48 95.52 0.74
FT 0.00 0.00 97.96(±0.39) 91.27(±0.76) 0.74(±0.04) 0.00 0.00 98.05(±1.24) 90.83(±0.87) 0.91(±0.08)
RL 1.27(±0.73) 0.64(±0.09) 97.17(±1.42) 94.70(±1.92) 0.55(±0.03) 41.35(±3.18) 70.97(±4.76) 99.18(±1.08) 93.44(±1.19) 0.81(±0.11)
GA 0.90(±0.08) 1.11(±0.10) 97.68(±1.39) 95.18(±0.89) 0.63(±0.02) 53.33(±2.11) 68.24(±1.90) 99.19(±0.35) 93.53(±0.48) 0.38(±0.11)
L1 0.00 0.00 96.01(±1.88) 92.95(±2.01) 0.51(±0.05) 0.00 0.00 96.54(±0.96) 91.90(±1.04) 0.39(±0.06)
BT 0.00 1.61(±1.22) 98.66(±1.14) 96.45(±1.96) 0.55(±0.06) 0.00 0.00 98.24(±1.46) 95.05(±1.02) 0.38(±0.06)
BS 0.42(±0.21) 0.18(±0.03) 97.30(±1.36) 94.53(±1.94) 0.51(±0.07) 66.32(±6.67) 75.89(±4.01) 99.53(±0.08) 94.70(±0.14) 0.63(±0.02)
SU 1.99(±0.54) 0.85(±0.21) 98.32(±1.04) 95.31(±1.52) 0.50(±0.10) 6.21(±1.50) 4.33(±0.81) 95.12(±1.23) 91.96(±1.23) 0.76(±0.05)

Ours 0.00 0.00 98.16(±0.36) 95.79(±0.17) 0.51(±0.01) 0.00 0.00 99.62(±0.81) 95.67(±0.66) 0.74(±0.03)

annealing learning rate scheduler. The batch size is set to 64. Follow-
ing [26], we utilize a pre-trained ResNet-50-IBN for MSMT17 and
DukeMTMC-reID datasets, fine-tuning this model for an additional
40 epochs to optimize the performance. For our LTMU framework,
only the parameters specific to the unlearning stage need to be
configured. The learning rate is uniformly set to 5e-4 for 10 epochs
across all datasets. The parameter 𝑘 , representing the number of
most similar categories, is dataset-dependent: 𝑘 = 4 for CIFAR10-LT,
𝑘 = 16 for CIFAR100-LT, MSMT17, and DukeMTMC-ReID. Addi-
tionally, the total number of augmentation steps,𝑀 , is fixed at 5 for
all datasets, as variations in𝑀 have been found to exert minimal
influence on the performance of the unlearning method.

For training the baseline models, we employ consistent parame-
ters with those used in training the original model for the Retrain
baseline, applied to the remaining dataset D𝑟 . For the FT baseline,
the original DNN model is fine-tuned on D𝑟 using a higher learn-
ing rate of 1.5e-3 over 10 epochs. For the RL baseline, the original
model is fine-tuned on the randomly relabeled dataset D𝑓 , with
a learning rate of 1e-4 maintained for 10 epochs. In the GA base-
line, the original model is fine-tuned on D𝑓 using gradient ascent,
which maximizes the loss function onD𝑓 . This fine-tuning process
is conducted with a learning rate of 1e-5 for 10 epochs.

For the L1 baseline, the original model is fine-tuned with an
additional 𝑙1 regularizer. Following the setup in [24], the sparsity-
promoting regularization parameter is set to 5e-3, which decays
linearly over 10 epochs. The learning rate for this fine-tuning pro-
cess is set to 5e-4.

In the BT baseline, an incompetent teacher is utilized to remove
information pertaining toD𝑓 , while a competent teacher preserves
information from D𝑟 . Knowledge distillation is then employed to
transfer knowledge from both teachers to the unlearned model. For

this approach, the learning rate is set to 1e-4, and the training is
conducted over 10 epochs.

The BS baseline leverages adversarial attacks to identify the
nearest incorrect label. Specifically, the Fast Gradient Sign Method
(FGSM) is used for this purpose. The hyper-parameters are config-
ured as follows: the attack bound is set to 1.0, the learning rate is
5e-4, and the training process spans 10 epochs.

For the SU baseline, we select the top-20% most salient parame-
ters based on the absolute gradient of the forgetting data and train
only these using the Finetune pipeline. Training is performed for
10 epochs with a cosine scheduler and learning rate of 3e-4.

4.2 Unlearning Performance
We first report the experimental results of our LTMU with six
baseline methods on CIFAR10-LT and MSMT17 across the long-
tailed setting in Table 1 (additional results for CIFAR100-LT and
DukeMTMC-ReID are provided in Appendix B.1). For successful
unlearning, UA and UTA would ideally remain low, while RA and
RTA are expected to stay relatively high. Retrain serves as the
upper performance bound for unlearning approaches. The results
reveal that most baselines achieve some degree of unlearning when
forgetting data belongs to the head class; for instance, FT, RL, BT
and BS maintain low UA and UTA, reflecting that the utility of D𝑓

is removed in these models. However, when tasked with unlearning
a tail class, most baselines struggle to erase information from D𝑓 ,
as evidenced by higher UA and UTA values. This challenge likely
arises due to distorted decision boundaries surrounding tail classes,
limiting the success of standard unlearning. Leveraging directional
feature augmentation, our LTMU framework effectively forgetsD𝑓

information even in tail classes, as demonstrated by consistently
low UA and UTA.
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Figure 3: The time consumption of each unlearning method on four datasets.

Regarding privacy, our LTMU achieves ASR results closelymatch-
ing those of Retrain across datasets, highlighting its robustness
against membership inference attacks. Furthermore, LTMU shows
minimal performance gaps compared to the Retrained model across
both head and tail unlearning scenarios, achieving notably low
UA for D𝑓 at only 2.14% on CIFAR10-LT and 0.00% on MSMT17,
while maintaining high RTA on D𝑟 . ASR results affirm that LTMU
provides privacy resilience superior to other baselines across most
evaluations.

Our LTMU framework performs comparably to the Retrainmodel
on most metrics and shows unique advantages on certain evalua-
tion criteria. The L1 approach achieves similar results to Retrain on
the CIFAR10-LT dataset, but it requires extensive fine-tuning on
all D𝑟 , resulting in higher unlearning time (detailed in Section 4.3).
Additionally, the L1 approach does not consistently maintain per-
formance across all datasets. Furthermore, LTMU not only achieves
lower UA and UTA values but also demonstrates a higher RTA than
the Retrain model. This indicates that our directional feature aug-
mentation scheme effectively enhances the generalization ability
of the unlearned model on the remaining classes.

4.3 Unlearning Efficiency
Beyond utility and privacy guarantees, minimizing time consump-
tion is essential when model owners receive forgetting requests
in real-world applications. So here we evaluate the unlearning
efficiency by measuring the time each method requires to com-
plete unlearning. As shown in Figure 3, LTMU significantly out-
performs other unlearning baselines. Specifically, LTMU achieves
substantial speed-ups over Retrain, with 34.82× and 46.11× faster
on CIFAR10-LT and CIFAR100-LT, respectively. On ReID datasets,
where Retrain incurs high time costs, LTMU’s acceleration is even
more pronounced, highlighting its effectiveness in scenarios with
high computational demands. While LTMU requires additional time
to generate augmented features, it compensates by utilizing class
similarity instead of adversarial labels, which aligns its time con-
sumption with BS. Additionally, while some unlearning methods
(L1 and BT) yield satisfactory performance in utility and privacy
guarantees, they are too time-consuming to be practical. This is

largely due to their coarse unlearning approaches, which necessi-
tate extensive fine-tuning on remaining data to recover utility.

4.4 Ablation Studies
To demonstrate the improvements introduced by our directional fea-
ture augmentation scheme, we compare unlearning performance
using different repair schemes, implemented via random Input
Augmentation (IA) [31], Feature Augmentation (FA) [41], and our
Directional Feature Augmentation (DFA) methods. The detailed
implementations of IA and FA are provided in Appendix A.2. We
present the unlearning performance of two baseline methods (GA
and BS), using IA and FA augmentation schemes, alongside our
framework in Table 2. The results show that using input-level aug-
mentations like IA for tail class unlearning retains residual infor-
mation from D𝑓 and significantly reduces the utility of D𝑟 . This
is likely due to IA repairing the decision boundary of the tail class
to a certain extent while failing to preserve inter-class similarity.
In contrast, FA generally preserves the utility of D𝑟 , but it reduces
the generalization capability of the unlearned model on D𝑟𝑡 (lower
RTA). This suggests that while FA can more effectively repair the
decision boundary of the tail class, it still causes blurring of the
decision boundary for the remaining classes. Overall, our LTMU
framework with DFA repair achieves the best unlearning perfor-
mance. By reusing inter-class similarity and seamlessly integrating
it into the framework, LTMU maintains a satisfactory RTE score,
despite DFA being a more complex repair scheme. Note that inte-
grating other unlearning baselines (FT, RL, L1 and BT) with FA is
challenging, as they either do not useD𝑓 or do not compute the fea-
ture space. Thus, a direct comparison requires separately executing
the repair and unlearning tasks. The conclusions remain consistent
with those above, and we also provide these additional results in Ta-
ble 2. Lastly, our unified boundary-based framework is significantly
more time-efficient compared to these separate schemes.

4.5 Hyper-parameter Analysis
The top 𝑘 similar classes is critical in our LTMU framework, as
it determines the number and orientation of generated features
for the tail class. So next we analyze the impact of varying 𝑘 on
performance metrics for all four datasets, as shown in Figure 4. Our
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Table 2: Comparison of using Input Augmentation (IA), Feature Augmentation (FA) and our method on Cifar10-LT and MSMT17
on tail class. The results are given by 𝑎(±𝑏), sharing the same format with Table 1

Dataset Method UA UTA RA RTA ASR RTE

ResNet-18
on

CIFAR10-LT

Retrain 0.00 0.00 99.55 79.63 0.66 950.31
FT+IA 28.05(±2.18) 9.69(±1.12) 98.41(±0.80) 76.57(±1.02) 0.42(±0.03) 133.30(±5.78)
FT+FA 7.23(±1.58) 9.04(±0.96) 99.45(±0.23) 78.44(±0.83) 0.45(±0.08) 146.90(±9.06)
RL+IA 26.51(±2.84) 31.20(±2.72) 96.97(±0.71) 74.71(±1.52) 0.69(±0.07) 34.02(±0.98)
RL+FA 0.45(±0.09) 0.40(±0.03) 98.83(±0.51) 75.94(±2.53) 0.71(±0.05) 40.81(±1.17)
GA+IA 3.61(±1.58) 7.30(±0.94) 92.22(±1.38) 72.21(±1.56) 0.73(±0.07) 24.87(±1.69)
GA+FA 0.61(±0.15) 0.40(±0.04) 98.67(±0.47) 72.13(±1.97) 0.68(±0.03) 22.16(±0.92)
BS+IA 3.79(±0.75) 4.00(±0.49) 65.73(±2.14) 37.13(±3.08) 0.77(±0.06) 29.57(±1.69)
BS+FA 7.83(±2.66) 9.60(±1.87) 99.41(±0.53) 74.88(±1.54) 0.40(±0.14) 26.74(±1.82)
L1+IA 0.00 0.00 99.68(±0.09) 74.88(±0.64) 0.81(±0.11) 137.56(±4.77)
L1+FA 0.00 0.00 99.89(±0.08) 75.56(±0.87) 0.78(±0.07) 140.27(±5.10)
BT+IA 13.54(±1.89) 7.50(±0.30) 93.82(±2.58) 75.73(±0.63) 0.35(±0.10) 171.23(±6.01)
BT+FA 2.10(±0.33) 2.90(±0.28) 99.09(±0.14) 75.62(±0.88) 0.44(±0.01) 188.09(±10.59)
Ours 0.00 0.10(±0.05) 99.46(±0.45) 81.78(±2.14) 0.68(±0.09) 27.29(±1.09)

ResNet-50-IBN
on

MSMT17

Retrain 0.00 0.00 99.48 95.52 0.74 2575.33
FT+IA 31.33(±3.51) 39.67(±2.09) 98.22(±0.35) 88.14(±0.98) 0.92(±0.07) 591.08(±11.62)
FT+FA 2.00(±0.50) 0.40(±0.02) 98.77(±0.19) 89.48(±1.10) 0.85(±0.10) 607.22(±17.48)
RL+IA 22.58(±1.55) 42.31(±3.19) 94.38(±0.87) 80.69(±1.11) 0.87(±0.04) 36.76(±2.41)
RL+FA 6.15(±0.39) 11.22(±2.03) 96.54(±0.09) 82.11(±1.03) 0.80(±0.09) 39.35(±3.88)
GA+IA 26.67(±4.16) 24.49(±2.15) 98.58(±0.47) 91.35(±1.47) 0.66(±0.08) 24.51(±1.32)
GA+FA 0.00 0.00 98.02(±1.30) 87.57(±0.93) 0.57(±0.05) 21.83(±1.79)
BS+IA 15.25(±1.37) 24.49(±2.48) 98.45(±0.41) 91.11(±1.40) 0.52(±0.03) 29.01(±2.11)
BS+FA 0.00 12.58(±1.06) 98.49(±0.38) 93.60(±1.38) 0.50(±0.04) 25.88(±1.33)
L1+IA 0.00 0.00 95.19(±1.03) 79.15(±3.56) 0.10(±0.02) 446.31(±12.75)
L1+FA 0.00 0.00 97.23(±0.76) 89.27(±0.91) 0.33(±0.10) 507.59(±10.10)
BT+IA 11.28(±0.29) 6.93(±0.15) 92.82(±1.08) 91.89(±1.83) 0.50(±0.04) 523.47(±9.98)
BT+FA 0.00 0.00 97.09±0.14 90.31(±0.99) 0.46(±0.06) 601.94(±20.05)
Ours 0.00 0.00 99.62(±0.81) 95.67(±0.66) 0.74(±0.03) 30.54(±1.39)

Figure 4: Utility performance of the LTMU framework on CIFAR10-LT, CIFAR100-LT, MSMT17 and DukeMTMC-reID datasets
(left to right) for different values of top 𝑘 similar classes used in directional feature augmentation.

findings reveal that, with an increasing 𝑘 , UA and UTA initially
decrease and then increase, while RA and RTA show a slight overall
decline. These trends suggest that choosing either too few or too
many nearest classes can reduce the effectiveness of our method.
Furthermore, using an excessively large 𝑘 during unlearning may
degrade RA and RTA, ultimately impacting the utility of the un-
learned model. Our results indicate that selecting a moderate value
for 𝑘 yields stable and effective unlearning performance according
to the size of label space across different datasets. That is why we

set 𝑘 to 4 and 16 for CIFAR10-LT and CIFAR100-LT, and 𝑘 = 16 for
both MSMT17 and DukeMTMC-reID.

In addition, the number of augmentation steps, denoted as𝑀 , in
our boundary repair scheme is a key hyperparameter in our frame-
work. It controls the number of augmented samples generated in
each direction. To evaluate the impact of𝑀 , we assess the utility
performance of our LTMU with varying values of𝑀 . The results
in Figure 5 indicate that with a small number of steps (𝑀 = 1, 3),
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Figure 5: Utility performance of the LTMU framework on CIFAR10-LT, CIFAR100-LT, MSMT17 and DukeMTMC-reID datasets
(left to right) for varying number of augmentation steps𝑀 used in directional feature augmentation.

Figure 6: t-SNE visualization of features on MSMT17 dataset.
The central blue solid triangle represents the feature of a
tail class sample, while the colored solid dots correspond to
features of head class samples. The colored hollow triangles
indicate generated features that are directed towards differ-
ent head classes, guided by inter-class similarity.

both UA and UTA remain relatively high across all datasets, sug-
gesting that fewer augmentation samples retain some information
aboutD𝑓 . As𝑀 increases, LTMU demonstrates superior and stable
unlearning performance for the tail class.

4.6 Visualization of Tail Class
To clarify the workings of our directional feature augmentation,
we present in Figure 6 a t-SNE [33] visualization of both the orig-
inal features from the tail and head classes (represented by solid
triangles and dots, respectively) and the augmented features (repre-
sented by hollow triangles). The augmented features are directed
towards the centroids of their top 𝑘 similar classes and are labeled
to their respective class accordingly. During the unlearning process,
the generated features guide the retracting of decision boundaries.
This organized boundary shifting enables an effective splitting of
the repaired feature space for the tail class, facilitating the removal
of information associated with D𝑓 .

To transparently verify the effect of our LTMU, we further gen-
erate the attention maps for models on unlearning data from the
ReID dataset, as illustrated in Figure 7. The highlighted regions rep-
resent areas of model attention. Observably, the unlearned model

(a) Input (b) Original (c) Retrain (d) Unlearn

Figure 7: The attention maps for the original, retrained, and
unlearned models, demonstrating the areas of focus on the
unlearning data from the ReID dataset.

produced by our LTMU shifts its focus to the corners and the back-
ground of person images, indicating its effective removal of specific
tail identification information.

5 Conclusion
In this paper, we have proposed a novel machine unlearning ap-
proach for long-tailed data distributions, focusing on the challenge
of effectively unlearning tail classes. Through a tailored bidirec-
tional boundary manipulation, our approach can fully erase the
tail class while maintaining the utility of the remaining classes. In
particular, we introduce a directional boundary repair scheme oper-
ating in the feature space to enhance the representational capability
of tail classes. Building on this repair scheme, we further develop
a boundary retraction approach to disperse the tail class features.
Experiments across multiple datasets and neural network architec-
tures validate the effectiveness and superiority of our approach.
Our work provides a practical solution for long-tailed machine
unlearning and paves the way for future research on unlearning
methods tailored to real-world, imbalanced data distributions.
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Appendices
The appendix includes four parts. The first part describes the de-
tailed experiment settings (Sec. A). The second part presents addi-
tional experimental results with respect to unlearning results on
diverse datasets (Sec. B.1), impact of various augmentation meth-
ods (Sec. B.2) and impact of different imbalance factors (Sec. B.3).
The last part discusses the limitations of the proposed framework
(Sec. C).

A Additional Information of Experiments
A.1 Descriptions of ReID Datasets
To evaluate the effectiveness of the proposed LTMU approach in
real-world scenarios and at scale, we conduct experiments on three
widely used person re-identification datasets: DukeMTMC-ReID,
MSMT17, and Market-1501.

• The Duke-MTMC-ReID dataset [43] is a subset of the multi-
target multi-camera tracking (MTMCT) dataset DukeMTMC
[30], collected using eight static HD cameras across Duke
University’s campus.
• MSMT17 [37] is a large-scale ReID benchmark captured in
outdoor and indoor environments using 15 cameras, offering
significant variation in lighting and background conditions.
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• Market-1501 [42] was collected at Tsinghua University using
six cameras (five high-resolution and one low-resolution),
covering the area outside a campus supermarket.

All datasets contain pedestrian bounding box images resized to a
uniform resolution of 256×128 pixels. These benchmarks provide
diverse and challenging conditions for evaluating the unlearning
performance of our method.

A.2 Implementation Details of Input
Augmentation and Feature Augmentation

Information augmentation is a widely adopted strategy to enhance
the quantity and diversity of imbalanced datasets [31]. Building
upon this foundation, we extend the concept of information aug-
mentation to the unlearning scenario. By leveraging information
augmentation techniques, we potentially address challenges inher-
ent to imbalanced data in some extent, improving the performance
of the unlearning method. This approach enables the model to bet-
ter adapt and recalibrate its learned knowledge, particularly for
underrepresented tail classes. In our framework, we employ two
typical information augmentation techniques: Input Augmentation
(IA) [8] and Feature Augmentation (FA) [41].

Input Augmentation (IA): This technique manipulates input
data directly to create diverse variations. Following the method-
ology in [8], we utilize a two-step process. First, we increase the
quantity of tail class data to 128 by duplicating the forgetting data.
Next, we apply a set of randomly selected transformations to these
images, including flip, color adjustment, brightness adjustment,
sharpness enhancement, and equalization. The resulting augmented
dataset, denoted as D𝑓 ,aug, is then used in the unlearning process.

Feature Augmentation (FA): Unlike input augmentation, fea-
ture augmentation operates within the learned feature space. Fol-
lowing in [41], we begin by extracting features 𝒛𝑖 = 𝐸 (𝒙𝑖 ) from all
input data in the forgetting data. Next, we compute two statistical
metrics: the mean feature vector 𝒛 and the covariance matrix Σ𝒛 .
Using these, we sample noise 𝜉 ∼ N(0, Σ𝒛) from the covariance
matrix. The sampled noise is then added to the mean feature vector,
yielding augmented features 𝒛̂ = 𝒛 + 𝜉 . This process is repeated
until the number of augmented features reaches 64.

B Extensive Experiments
B.1 Comparative Analysis of Performance

Metrics Across Diverse Datasets
To further verify the effectiveness of our unlearning method, we
report the experimental results of our LTMU with six baseline
methods on extensive datasets CIFAR100-LT, DukeMTMC-ReID
and Market-1501 in Table 3. The results reveal that our LTMU
method is competitive with the Retrain model across the majority
of metrics, while also demonstrating distinct advantages in specific
evaluation criteria. For instance, in the DukeMTMC-ReID dataset,
our LTMUmethod secures the top performance in terms of UA, UTA
and RTA. Additionally, it ranks second in both RA and ASR across
both head class and tail class scenarios. This aligns with the findings
presented in the main text, further validating the effectiveness of
our approach.

(a) CIFAR10-LT (b) CIFAR100-LT

Figure 8: The performance of our method on CIFAR10-LT
and CIFAR100-LT with different imbalance factor.

B.2 Impact of Augmentation Methods
To evaluate the potential risks associated with input augmentation
(IA) in blurring decision boundaries for the remaining classes, we
conducted experiments on four unlearning baselines, comparing
their performance with and without IA. The results are summa-
rized in Table 4. The findings reveal that the use of IA results in a
reduction in both UA and UTA for the baseline models. However, it
is accompanied by a noticeable decline in RA and RTA, as well as a
significant increase in ASR. These results suggest that IA not only
compromises the integrity of decision boundaries for the remaining
classes but also introduces substantial privacy risks, underscoring
the need for careful consideration when employing IA in long-tailed
unlearning scenarios.

B.3 Impact of Different Imbalance Factors
To evaluate the robustness of our LTMU method, we conducted ex-
periments under varying imbalance factors 𝜌 , specifically at 𝜌 = 100,
𝜌 = 50, and 𝜌 = 10. The results are depicted in Figure 8. As shown,
our performance metrics remain highly consistent across these
different imbalance scenarios. Notably, the RTA improves as the
imbalance factor decreases, which can be attributed to the reduced
skewness in the data distribution, thereby enhancing the model’s
generalizability. These findings collectively demonstrate the ro-
bustness of our LTMU method across a wide range of imbalance
factors.

C Discussion of Limitations
LTMU addresses several critical challenges in machine unlearning,
particularly within the domain of image classification. This study
primarily centers on applications in Computer Vision, emphasizing
its fundamental importance to the unlearning problem. However,
the generalization of the proposed techniques to other domains,
such as Natural Language Processing (NLP), remains an open ques-
tion. The transferability and efficacy of these methods in NLP or
other non-vision domains require further comprehensive investiga-
tion, highlighting a key limitation and potential direction for future
research. Besides, LTMU makes significant strides in advancing
the field of class-wise unlearning. However, the problem of sample-
wise unlearning, where the forgetting process involves samples
from multiple classes, has not been addressed in this study. We
acknowledge these limitations and plan to explore these directions
in future work.
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Table 3: Performance of different unlearning methods on CIFAR100-LT, DukeMTMC-ReID and Market-1501 across two
unlearning scenarios. The results are given by 𝑎(±𝑏), where 𝑎 denotes the mean value, 𝑏 denotes the standard deviation over 5
independent trails. The most outstanding unlearning performance for each method is emphasized with bold text, while the
second-best is distinguished with an underline.

Dataset Method
Head class Tail class

UA UTA RA RTA ASR UA UTA RA RTA ASR

ResNet-18
on

CIFAR100-LT

Retrain 0.00 0.00 80.43 46.29 0.48 0.00 0.00 99.76 46.87 0.52
FT 6.81(±0.76) 5.80(±0.27) 94.36(±0.84) 44.96(±0.85) 0.20(±0.05) 32.18(±2.01) 11.50(±1.50) 99.79(±0.10) 43.18(±0.21) 0.67(±0.05)
RL 11.12(±2.43) 4.40(±1.96) 76.85(±1.96) 40.99(±2.13) 0.37(±0.04) 15.53(±0.66) 9.00(±1.22) 99.19(±0.15) 42.44(±1.02) 0.33(±0.08)
GA 8.48(±2.03) 2.60(±0.80) 76.97(±1.78) 41.08(±2.06) 0.37(±0.04) 12.11(±2.89) 6.55(±1.25) 95.34(±1.92) 38.43(±2.03) 0.42(±0.08)
L1 24.69(±4.32) 15.60(±3.61) 88.61(±0.30) 45.06(±1.34) 0.08(±0.03) 16.67(±2.39) 8.83(±0.36) 99.19(±0.04) 42.45±0.11) 0.33(±0.08)
BT 0.00 0.00 79.71(±0.28) 40.51(±0.74) 0.21(±0.07) 0.00 0.00 97.27(±0.05) 40.22(±0.78) 0.10(±0.03)
BS 2.80(±1.04) 0.60(±0.08) 76.93(±3.93) 41.54(±1.39) 0.51(±0.02) 15.17(±1.22) 4.30(±0.70) 95.27(±0.20) 38.51(±2.05) 0.60(±0.07)

Ours 0.80(±0.07) 0.00 80.22(±0.41) 47.24(±1.40) 0.53(±0.08) 0.00 0.00 99.16(±0.04) 44.58(±0.11) 0.50(±0.09)

ResNet-50-IBN
on

DukeMTMC-ReID

Retrain 0.00 0.00 99.56 95.53 0.51 0.00 0.00 99.48 95.52 0.55
FT 0.00 0.00 97.96(±1.05) 91.27(±0.96) 0.84(±0.11) 0.00 0.00 98.05(±0.48) 90.83(±0.89) 0.84(±0.04)
RL 1.31(±0.85) 1.09(±0.43) 97.66(±1.44) 98.75(±0.75) 0.41(±0.06) 70.33(±5.24) 36.67(±3.08) 98.60(±0.51) 98.98(±0.27) 0.33(±0.02)
GA 1.82(±0.11) 1.57(±0.30) 97.48(±1.07) 98.80(±0.63) 0.38(±0.07) 73.67(±4.88) 53.84(±6.01) 97.51(±0.79) 96.01(±1.27) 0.69(±0.07)
L1 0.00 0.00 96.01(±0.39) 92.95(±1.28) 0.51(±0.02) 0.00 7.69(±2.44) 96.54(±1.47) 91.90(±2.20) 0.66(±0.07)
BT 0.00 0.00 98.66(±1.01) 96.45(±0.89) 0.55(±0.10) 0.00 0.00 98.43(±0.44) 95.34(±0.96) 0.58(±0.08)
BS 0.42(±0.27) 0.18(±0.05) 97.30(±0.63) 94.53(±1.17) 0.51(±0.03) 43.38(±2.55) 61.47(±1.69) 99.53(±0.15) 94.70(±0.08) 0.63(±0.03)

Ours 0.00 0.00 98.59(±0.71) 98.86(±0.59) 0.51(±0.02) 0.00 0.00 98.85(±1.06) 99.12(±0.13) 0.60(±0.03)

ResNet-50-IBN
on

Market-1501

Retrain 0.00 0.00 99.56 95.53 0.51 0.00 0.00 99.48 95.52 0.74
FT 0.00 0.00 97.96(±0.93) 91.27(±1.22) 0.71(±0.06) 0.00 0.00 98.05(±1.05) 90.83(±2.45) 0.84(±0.09)
RL 1.27(±0.25) 0.64(±0.18) 97.27(±0.22) 94.69(±0.36) 0.41(±0.06) 71.67(±4.21) 84.16(±2.60) 97.53(±0.85) 94.61(±0.90) 0.37(±0.11)
GA 0.90(±0.39) 1.11(±0.27) 97.68(±0.55) 95.18(±0.21) 0.66(±0.05) 65.33(±1.34) 87.54(±3.59) 98.55(±1.01) 94.74(±2.18) 0.42(±0.05)
L1 0.00 0.00 96.01(±3.00) 92.95(±2.17) 0.51(±0.07) 0.00 0.00 96.54(±1.11) 91.90(±2.39) 0.67(±0.12)
BT 0.00 0.00 98.66(±0.32) 96.45(±0.52) 0.55(±0.02) 0.00 0.00 96.43(±1.22) 93.34(±2.70) 0.56(±0.06)
BS 0.42(±0.08) 0.18(±0.02) 97.30(±1.18) 94.53(±0.60) 0.51(±0.01) 61.37(±2.11) 70.29(±3.91) 99.53(±0.15) 94.70(±1.25) 0.63(±0.03)

Ours 0.00 0.00 96.43(±1.19) 96.32(±1.23) 0.50(±0.03) 0.00 0.00 98.36(±1.08) 94.95(±0.90) 0.66(±0.04)

Table 4: Comparison of w/wo using Input Augmentation(IA) on tail class of Cifar10-LT and Cifar100-LT. The results are given
by 𝑎(±𝑏), sharing the same format with Table 3.

Dataset Method UA UTA RA RTA ASR RTE

ResNet-18
on

CIFAR10-LT

Retrain 0.00 0.00 99.55 79.63 0.66 950.31
RL 33.82(±4.18) 5.40(±2.30) 99.39(±0.25) 75.90(±0.94) 0.34(±0.04) 24.02(±0.56)
GA 33.22(±4.79) 5.40(±2.30) 98.91(±0.21) 75.92(±0.95) 0.34(±0.04) 26.13(±1.78)
BT 46.66(±5.34) 25.15(±1.15) 98.79(±0.87) 74.43(±2.33) 0.06(±0.03) 157.23(±11.15)
BS 39.84(±6.16) 12.28(±3.75) 99.85(±0.35) 79.39(±1.10) 0.60(±0.10) 25.43(±1.32)

RL+IA 3.41(±0.52) 4.25(±0.88) 93.95(±1.24) 73.04(±0.83) 0.74(±0.10) 26.94(±1.17)
GA+IA 3.41(±0.87) 4.15(±0.62) 93.96(±0.69) 73.08(±1.08) 0.73(±0.06) 29.87(±1.69)
BT+IA 31.09(±4.41) 15.3(±0.89) 92.35(±1.00) 74.97(±1.91) 0.25(±0.08) 219.86(±5.11)
BS+IA 4.08(±0.87) 4.90(±1.22) 94.13(±1.14) 73.83(±0.92) 0.75(±0.06) 29.57(±1.69)

ResNet-34
on

CIFAR100-LT

Retrain 0.00 0.00 99.76 46.87 0.52 1137.51
RL 15.53(±0.66) 9.00(±1.22) 99.19(±0.15) 42.44(±1.02) 0.33(±0.08) 20.15(±0.25)
GA 12.11(±4.88) 6.55(±1.25) 95.34(±1.92) 38.43(±2.03) 0.42(±0.07) 21.65(±0.28)
BT 0.00 0.00 97.27(±0.44) 40.22(±0.96) 0.10(±0.03) 253.29(±13.97)
BS 15.17(±1.22) 4.30(±0.70) 95.27(±0.20) 38.51(±2.05) 0.60(±0.03) 21.19(±1.73)

RL+IA 0.00 2.04(±0.84) 55.91(±3.28) 30.55(±4.11) 0.83(±0.09) 24.87(±1.36)
GA+IA 0.00 32.11(±2.15) 55.86(±0.47) 30.54(±1.47) 0.85(±0.08) 24.51(±1.32)
BT+IA 0.00 0.00 79.03(±1.81) 41.86(±2.53) 0.00 293.87(±9.21)
BS+IA 3.79(±0.19) 4.00(±0.33) 65.73(±2.42) 37.13(±3.06) 0.77(±0.10) 24.79(±0.86)
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