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Abstract
Machine Unlearning (MU) has emerged as a
promising solution for removing the influence
of data that an owner wishes to unlearn from
Large Language Models (LLMs). However,
existing MU methods, which require tuning
the entire model parameters on the unlearned
data with random labels or perturbed gradients,
significantly degrade model utility, especially
given the difficulty of accessing the original
training data. This presents a key challenge:
how can we achieve MU using only the un-
learned data while preserving model utility? In
this paper, we propose NeuMuter, a simple but
effective MU method that eliminates the influ-
ence of unlearned data from LLMs by modu-
lating the outputs of merely 1% of the neurons
in the feed-forward network (FFN) modules
within the Transformer blocks, minimizing dis-
ruption to the model’s performance. We design
a trainable masking scheme that decouples the
memorization of different training data within
the neurons of LLMs, allowing us to precisely
identify and modify neurons associated with
the unlearned data. Through comprehensive
evaluations on two benchmarks across four dif-
ferent LLMs, we demonstrate that modifying
the outputs of a few fraction of the total neurons
can effectively achieve MU while preserving
the model’s utility across downstream tasks.

1 Introduction

Large Language Models (LLMs) have achieved
remarkable success, primarily due to their pretrain-
ing on vast amounts of text corpora, sourced from
the internet (Chang et al., 2024b; Minaee et al.,
2024; Chaves et al., 2024; Liu et al., 2023). When
the training data contains unauthorized user in-
formation, practitioners are required to remove
it from well-trained LLMs upon request, as in-
dividuals are granted the “Right to Be Forgot-
ten” (RTBF) (Kurmanji et al., 2024) under reg-
ulations such as the EU’s General Data Protection
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Regulation (GDPR) (Voigt and Von dem Bussche,
2017) and US’s California Consumer Privacy Act
(CCPA) (Bonta, 2022). To address this issue, Ma-
chine Unlearning (MU) has emerged as a promising
paradigm, which aims to eliminate the effects of
specific training samples from LLMs while preserv-
ing the remaining knowledge. Given the massive
scale of LLMs, retraining from scratch is impracti-
cal, making the development of efficient unlearning
methods for LLMs a significant challenge.

Most existing MU methods for LLMs require
fine-tuning the entire model parameters by relabel-
ing the unlearned data or reversing the contribution
of gradient descent on the unlearned data (Jang
et al., 2023; Wang et al., 2023; Chen and Yang,
2023; Yao et al., 2023; Eldan and Russinovich,
2023; Yao et al., 2024; Zhang et al., 2024a; Liu and
Kalinli, 2024; Liu et al., 2024b; Lee et al., 2024;
Maini et al., 2024). For example, MU methods has
been proposed that focuses on solely leveraging
the unlearned data. For example, Gradient Ascent
methods (Jang et al., 2023; Zhang et al., 2024a)
aim to maximize the loss of the unlearned data,
whereas Data Relabeling (Eldan and Russinovich,
2023) seeks to minimize the loss of the relabeled
unlearned data.

However, modifying the entire parameters of
LLMs based solely on limited unlearned data often
results in catastrophic forgetting, where removing
specific data negatively impacts the model’s util-
ity (Yao et al., 2024; Fan et al., 2024). To mit-
igate this, other methods typically involve addi-
tional fine-tuning on the remaining training data
(c.f. Table 1). For instance, Gradient Difference
based methods (Yao et al., 2024; Lee et al., 2024;
Maini et al., 2024) minimize the model’s loss on
the remaining data, while KL Minimization tech-
niques (Wang et al., 2023; Chen and Yang, 2023;
Liu and Kalinli, 2024; Yao et al., 2023; Liu et al.,
2024b) minimize the Kullback-Leibler (KL) diver-
gence between the predictions on remaining data of



Table 1: Comparison with existing MU methods. Most
existing methods either require modifying the whole
parameters of LLMs, or the access to the remaining
training set.

the original and the fine-tuned models. In practice,
long-term storage of LLM training data is often
infeasible due to high maintenance costs, extensive
storage requirements, and privacy concerns (Cha
et al., 2024). Consequently, these MU methods
struggle to leverage the remaining training data to
maintain model utility.

Therefore, a fundamental gap in MU for LLMs
remains: how can we achieve MU using only the
unlearned data while preserving model utility? To
bridge this gap, we propose NeuMuter, a simple
yet effective MU method that modifies the outputs
of merely 1% of the neurons in the feed-forward
network (FFN) modules within the Transformer
blocks, which are associated with the data to be
unlearned. The key insight behind NeuMuter is
that specific neurons within the FFN modules play
a crucial role in retaining the memory of training
data (Geva et al., 2021, 2022). Instead of altering
the entire model parameters, we selectively adjust
only the neurons responsible for memorizing the
unlearned data while preserving the vast majority
of the network’s parameters. This targeted interven-
tion enables effective MU while avoiding severe
utility degradation, eliminating the need for addi-
tional fine-tuning on the remaining training data.

To leverage this, we introduce a trainable neuron
mask within FFN modules to decouple memoriza-
tion and precisely identify neurons related to the
unlearned data. Unlike existing neuron localization
methods (Dai et al., 2022; Wu et al., 2023; Chang
et al., 2024a; Chen et al., 2024), which primar-
ily focus on identifying neurons linked to specific
keywords, our approach targets the neurons most
critical for unlearning entire sentences. Recogniz-
ing that different neurons contribute variably to the
unlearned data, we utilize the mask values as scal-
ing factors for the outputs of the selected neurons,

rather than directly deactivating the selected neu-
rons. By adaptively modulating the outputs of these
neurons, we can effectively eliminate the model’s
responses related to the unlearned data while main-
taining the overall utility of the LLMs.

Our contributions are summarized as follows:

• We propose NeuMuter, an MU method for
LLMs, which modifies the intermediate out-
puts of only a few neurons associated with the
unlearned data. Unlike existing approaches,
NeuMuter can preserve the unlearned model
utility without fine-tuning on the remaining
training data.

• We propose a trainable mask scheme to decou-
ple data memorization within LLM neurons,
effectively identifying neurons specific to spe-
cific training data. Our method shows that
data memorization is localized to a sparse sub-
set of neurons, about one in hundred of the
total neurons in FFNs of LLMs.

• We evaluate the performance of NeuMuter
on two benchmarks across four LLMs. The
experiment results show that NeuMuter out-
performs five state-of-the-art MU methods in
both MU performance and LLM utility. The
code for NeuMuter has been released for re-
producibility purposes1.

2 Preliminary

2.1 Knowledge Neuron
In LLMs, Transformer block comprises multi-head
self-attention (SelfAtt) modules and feed-forward
network (FFN) modules, interconnected by resid-
ual connections (He et al., 2016). LetX l denote the
input of the l-th Transformer block, and the opera-
tions within these two modules can be formulated
as follows:

Qlh = X lWQ,l
h ,K l

h = X lWK,l
h , Vh = X lW V,l

h

(1)

Self-Attlh(X
l) = softmax

(
Qlh(K

l
h)
T
)
V l
h, (2)

FFNl(H l) = σ
(
H l(W l

1)
T
)
W l

2, (3)

where Qlh, K l
h , and V l

h represent the sequences of
query, key, and value vectors for the h-th attention

1https://github.com/SPHelixLab/NeuMuter



head of the l-th Transformer block, respectively.
WQ,l
h , WK,l

h , W V,l
h , W l

1, and W l
2 are parameter

matrices for the l-th Transformer block. H l is the
hidden state given by projecting the concatenation
of all heads. σ is the activation function in the FFN
module. For simplicity, we omit the scaling factor
in self-attention and the bias terms.

As revealed by the previous work (Geva et al.,
2021), the parameters of the neurons corresponding
to the FFN’s parameters W l

1 and W l
2 constitute the

key-value memory pairs. Let kli and vli represent
the parameters of the i-th neuron in the first and
the second layer of the FFN, respectively. The
neuron activation of the first layer ali = σ(klih

l)
can be viewed as a memory coefficient to weight
the second layer neuron with the parameters of
vli that is associated with a semantic or syntactic
concept (Geva et al., 2022). The output hidden
states of the FFN module of the l-th Transformer
block can be rewritten as:

ol =W l
2a
l =

d∑
i=1

ali · vli, (4)

where d is the dimension of the intermediate hidden
states in FFN.

2.2 Unlearning Goal

In the realm of MU, the objective is to remove the
effects of specific data from a trained model, so that
the model’s predictions after unlearning closely re-
semble those of a model that has been retrained
from scratch on the remaining data. Given the n-th
training sample consisting of tn tokens, denoted as
xn = (wn1 , w

n
2 , . . . , w

n
tn), in the pretraining corpus

D, where D = {x1, . . . ,xN}, the original genera-
tive LLM modelMo with L layers and parameters
θo is usually trained using next-token prediction.
The model characterizes the conditional probability
based on given prompts: Pθo(wt | w<t). Formally,
let Df ⊆ D represent the subset of training data
we intend to unlearn, and Dr = D \ Df denote the
subset of data that remains. Our goal is to make
an original modelMo with parameters θo to forget
Df and obtain an unlearned model Mu with pa-
rameters θu that contains minimal influence from
Df while maintaining the model’s performance on
Dr. Since obtaining a retrained model of LLMs
is nearly impossible, we base our work on prior
researches (Kurmanji et al., 2024; Chen and Yang,
2023; Gao et al., 2024) and concentrate on the rela-
tionship between the prediction distributions of the

original model and the model after unlearning, for
both the unlearned and the remaining data.

Thus, the aim of MU in the context of LLMs
is twofold: (i) Ensuring effective unlearning of
the unlearned data; (ii) Preserving the model’s ef-
fectiveness on the remaining data. Therefore, we
formulate the objective of MU for LLMs as:

argmax
θu

dist(Mu(Df );Mo(Df )), (5)

argmin
θu

dist(Mu(Dr);Mo(Dr)), (6)

where dist represents the metric used to measure
the divergence between the predictions of the un-
learned model Mu and the original model Mo,
such as KL divergence (Kurmanji et al., 2024; Chen
and Yang, 2023) and cross-entropy loss (Zhang
et al., 2024a; Yao et al., 2024).

3 Design of NeuMuter

NeuMuter modifies the intermediate outputs of a
small subset of LLM neurons associated with the
unlearned data, therefore it consists of two main
phases (c.f. Figure 1): Memorization Neuron Lo-
calization and Memorization Removal.

3.1 Memorization Neuron Localization
Several neuron localization methods exist for
LLMs (Dai et al., 2022; Wu et al., 2023; Chang
et al., 2024a; Chen et al., 2024), which primarily
target predetermined information within a sentence,
such as tail entities (Dai et al., 2022) or person-
ally identifiable information (PII) (Wu et al., 2023;
Chen et al., 2024). Directly applying existing local-
ization methods to our MU approach would only
select neurons associated with specific phases or
words in the sample, thereby neglecting other rele-
vant information in the unlearned data and result in
incomplete unlearning.

In NeuMuter, we aim to find the smallest subset
of knowledge neurons responsible for the unlearned
data prediction, as these neurons directly impact
the model’s loss on the unlearned data. To achieve
this goal, we introduce a trainable mask matrix
M ∈ RL×d into the FFNs within the Transformer
blocks of LLMs. Specifically, each learnable mask
vector m ∈ Rd is inserted between the two linear
layers of each FFN module. Formally,

olu =W l
2a
l �ml =

d∑
i=1

ml
i · ali · vli, (7)



Figure 1: Illustration of NeuMuter. The shading of parameters in the mask indicates the sensitivity of the
corresponding knowledge neurons to the unlearned data; the darker the color, the more critical that knowledge
neuron is for the model’s memory of the unlearned data.

where ml is the mask vector of M applied to the
l-th FFN module, ml

i is the i-th value of ml corre-
sponding to the i-th neuron in the second layer of
the FFN, and � denotes the Hadamard product. In
NeuMuter, we train the mask by increasing the pre-
diction loss on Df , allowing us to identify which
neurons are relevant to the unlearned content:

Lf (Df ; θ) = −
∑

xj∈Df

tj∑
t=1

logPθ(w
j
t |w

j
<t), (8)

where θ represents the combination of θo and the
added mask M . P denotes the probability of the
t-th word wjt occurring, given the preceding t− 1
words wj<t in the input sequence.

However, the neurons selected may include not
only those related to the unlearned data but also
some that encode general knowledge, such as gram-
mar and syntax, referred to as “universal neu-
rons” (Gurnee et al., 2024). Modifying all these
neurons would significantly impair the model’s
performance. To filter out these neurons, we
use a Transformer-based masked language model
(MLM), such as BERT, to generate neighbor sam-
ples for Df (Bărbulescu and Triantafillou, 2024;
Mattern et al., 2023a), which share the general
knowledge but differ in specific information of
Df . We generate K neighbor samples for each
unlearned sample x ∈ Df to form D̃n by replacing
a randomly selected proportion of tokens in x with
replacement ratio r.

Due to the absence of knowledge regarding
the unlearned data in the MLM , maintaining the
model’s performance on these neighbor samples
can help filter out universal neurons, leaving only
those neurons specific to Df . Therefore, we train
the mask by minimizing the prediction KL diver-

gence between the LLM’s outputs on the neighbor
samples before and after applying the mask:

Ln(D̃n; θ) =
∑

x̃k∈D̃n

|x̃k|∑
t=1

KL
(
Mθo(w̃

k
t |w̃k<t)

‖Mθ(w̃
k
t |w̃k<t)

)
.

(9)

To further improve the precision of neuron lo-
calization, we enhance the sparsity to our mask,
focusing on selecting only the most critical neu-
rons related to the unlearned data. We assume
each mask value ml

i to be an independent ran-
dom variable that follows a hard concrete distri-
bution HardConcrete(logαli, β

l
i) (Louizos et al.,

2018) with temperature β and location αli to im-
prove the robustness of mask training:

sli = σ(
1

β
(log

µli
1− µli

+ logαli)), (10)

ml
i = min(1,max(0, sli(ζ − γ) + γ)), (11)

R(M) = 1− 1

Nm

L∑
l=1

d∑
i=1

σ(logαli − βlog
−γ
ζ

),

(12)
where σ denotes the sigmoid function, γ and ζ are
constants, µli is randomly sampled from uniform
distribution U(0, 1), and Nm = L · d. Instead of
directly training ml

i, the random variable sli param-
eterized by αli is learned to approximate a discrete
Bernoulli distribution (Maddison et al., 2022). We
restrict the values in the mask to the range of 0 to 1
as shown in Eq. 11. R(M) is the L0 regularization
to minimize the number of localized neurons and



allows the mask values to measure the contribution
of neurons to the memorized data. The smaller
the value, the greater the memory sensitivity of the
neuron. Finally, we train the mask by minimizing
the following loss function:

LMU = −Lf (Df ; θ) + λLn(D̃n; θ) + ηR(M),
(13)

where λ and η are hyper-parameters. Throughout
the training process, all weights of the LLMs re-
main frozen, with only M being trainable.

After training M, we select neurons with mask
values below a threshold ε as knowledge neurons
N . To determine ε, we sort all values in M in
ascending order. Then, we compute the total energy
of these elements, where energy is defined as the
absolute value of each element. After sorting the
elements, we incrementally accumulate the energy
until the cumulative energy does not exceed 5% of
the total energy. The value corresponding to this
point is selected as the threshold ε.

3.2 Memorization Removal
Having identified the neurons N associated with
Df , a straightforward approach to unlearn is to de-
activate the identified neurons. However, complete
deactivation of these neurons may compromise the
model’s utility, evidenced by their non-zero activa-
tions for unrelated inputs (Foster et al., 2024).

Referring back to Eq. 4 in Section 2.1, al can
be seen as the dynamic coefficients of vl, where
increasing (or decreasing) the coefficient can en-
hance (or diminish) the probability of the concepts
contained in the corresponding value vector in the
model’s output distribution (Geva et al., 2022).
Thus, the values of the trained mask can therefore
be regarded as indicators of the level of memoriza-
tion of the unlearned data for the neurons in N .

We apply the values of the mask M as reduc-
tion factors to the selected neurons to reduce the
model’s memorization of the unlearned data while
keeping the other neurons unchanged:

ml
i = 1{vl

i∈N}
·ml

i + 1{vl
i /∈N}

, (14)

where 1{·} is indicator function, yielding a value of
1 if the condition within {·} is met and 0 otherwise.
The pseudocode is elaborated in Algorithm 1.

4 Performance Evaluation

4.1 Experiment Setup
Models and Datasets. We follow the settings in
existing MU works (Jang et al., 2023; Bărbulescu

and Triantafillou, 2024) to perform a fair compari-
son with them. We use the GPT-Neo model family
(125M, 1.3B, 2.7B) (Black et al., 2021), and the
unlearned samples are selected randomly from the
Training Data Extraction Challenge2. We also use
the TOFU benchmark (Maini et al., 2024) to further
evaluate the performance of our NeuMuter (5).
Comparison methods. We compare the perfor-
mance of our NeuMuter with five state-of-the-art
MU methods targeted at LLMs.

• Gradient Ascent (GA) (Jang et al., 2023). This
method achieves unlearning by reversing the
original training loss on the unlearned data,
thereby removing the contribution of the un-
learned data to model training.

• Selective Gradient Ascent (SGA) (Bărbulescu
and Triantafillou, 2024). This method refines
GA by selectively applying gradient ascent
to samples with memory accuracy above a
specified threshold in the unlearned data. It
dynamically adjusts the target set during train-
ing, focusing on high-memory samples until
overall unlearning criteria are met.

• Task Arithmetic (TA) (Ilharco et al., 2023).
This method fine-tunes the original LLM on
the unlearned data to identify the direction
in which the relevant parameters are updated
during the learning process. The updated
weights are then subtracted from the origi-
nal model, thereby removing the information
learned from the unlearned data.

• Deliberate Imagination (DI) (Dong et al.,
2024). This method leverages self-distillation
to reduce the sampling probability of un-
learned tokens while increasing the probabil-
ity for others. By modifying the logits of
the student model, it selectively unlearns tar-
geted data while retaining overall model per-
formance.

• Integrated Gradients (IG) (Chang et al.,
2024a; Dai et al., 2022; Wu et al., 2023).
This method identifies FFN neurons associ-
ated with specific tokens (e.g., names or phone
numbers) by computing the accumulated gra-
dients from a zero vector to the original hidden
state in the second FFN layer. Unlearning is

2https://github.com/google-research/lm-extraction-
benchmark



Table 2: Performance comparison of NeuMuter with five baselines. Bold results indicate the best performance.

then achieved by zeroing out the activations
of these neurons.

Evaluation Metrics. We evaluate NeuMuter in
terms of both unlearning effectiveness and model
utility for the unlearned LLMs.

From the effectiveness perspective, we use mem-
orization accuracy (MA) and extraction likelihood
(EL) (Jang et al., 2023) to quantify the memoriza-
tion of LLMs with respect to the given unlearned
data. Additionally, we perform a loss-based mem-
bership inference attack (MIA) on the unlearned
LLMs to assess how much information about the
unlearned data remains in the model, following the
approach in (Bărbulescu and Triantafillou, 2024).

For the utility, we quantify the performance of
unlearned LLMs using various metrics, including
classification accuracy (ACC) on NLP classifica-
tion tasks, F1 score (F1) and cross-entropy loss
(CE) on dialogue reasoning benchmarks, and per-
plexity (PPL) on validation corpus. The detailed
description of the evaluation metrics and experi-
mental details is available in Appendix B.

4.2 Performance of NeuMuter

We evaluate NeuMuter alongside five compari-
son methods on GPT-Neo models, with results
shown in Table 2. Average metrics across tasks
and datasets are reported, with detailed results in
Appendix C. NeuMuter outperforms other methods

in unlearning with minimal utility loss, particularly
for smaller models. It reduces text classification ac-
curacy by only 0.42%, while improving F1 scores
by 0.29% in dialogue tasks. In contrast, GA, SGA,
and TA cause significant performance drops, es-
pecially in generation tasks. Existing MU meth-
ods struggle with small models, making NeuMuter
more suitable for resource-constrained hardware.

As model size increases, NeuMuter remains ef-
fective. For the 2.7B GPT-Neo model, it only re-
duces classification accuracy by 0.1%, maintaining
original F1 scores. GA and SGA cause nearly a
7% drop in F1, while DI matches NeuMuter in
classification but lags in dialogue tasks.

NeuMuter generates more fluent outputs, with
lower CE and PPL compared to other methods.
GA has the worst fluency because gradient ascent
approach softens the probability distribution. Neu-
Muter’s minimal impact on utility comes from mod-
ifying only the neurons related to Df . Although
NeuMuter may show slightly higher EL values, this
isn’t a disadvantage, as GA and SGA often over-
forget, generating repetitive content. NeuMuter, by
targeting critical neurons and filtering out universal
ones, strikes a better privacy-utility balance.

4.3 Impact of Unlearned Data Size
To investigate the impact of the unlearned data size
on the performance of NeuMuter, we set the num-
ber of Df to 16, 32, 64, 128, and 256, using the



(a) Acc. on Classification Datasets (b) F1 Score on Dialogue Datasets (c) CE on Dialogue Datasets

Figure 2: The impact of the size of unlearned dataset on the performance of NeuMuter and comparisons.

(a) On GPT NEO 125M. (b) On GPT NEO 1.3B. (c) On GPT NEO 2.7B.

Figure 3: The impact of the neuron masks added to different Transformer blocks.

GPT-Neo model with 1.3B parameters. The exper-
imental results are shown in Figure 2. NeuMuter
outperforms other methods across model sizes and
remains robust as the number of unlearned samples
increases. For 256 unlearned samples, it achieves
49.00% accuracy in text classification with only a
1.01% drop from the original model. With fewer
samples, NeuMuter even outperforms the original
in language generation. Performance slightly de-
clines when unlearned samples exceed 32 due to
more selected neurons.

In contrast, gradient-ascent-based methods suf-
fer significant utility loss as unlearned data grows.
For fewer samples (s = 16), SGA performs well,
with only a 0.11% drop, but with s = 256, it causes
a 22.92% loss in generation ability. IG performs the
worst by indiscriminately deactivating neurons, re-
sulting in large performance degradation. Increased
error margins are observed as the number of un-
learned samples rises, likely due to variations in
the order and content of unlearned data.

4.4 Impact of Masks in Transformer Blocks

In NeuMuter, we by default add masks to all Trans-
former blocks. Two questions naturally arise: Are
all Transformer blocks are equally important for
unlearning Df? If not, can MU be achieved by
adding masks only to the most important blocks?

To address these questions, we first add masks to
all layers and run NeuMuter to unlearn 32 samples.
Then, based on the trained masks, we respectively
select the masked neurons in the first l ∈ [1, . . . , L]
layers and measure the model’s MA on Df . Addi-
tionally, we calculate the ratio of neurons selected
in each layer to the total number of neurons therein,
based on the masks.

Figure 3 shows that the blocks critical for re-
ducing the model’s memory of unlearned data are
generally in the middle and later parts of the LLMs,
even though NeuMuter-trained masks select more
neurons in the early blocks. This effect becomes
more pronounced as model size increases. For the
1.3B model, masking the first 10 blocks results in a
2.26% reduction in MA, while masking later blocks
leads to a 55.03% drop. In the 2.7B model, adding
masks to the first 14 blocks has minimal impact
on MA. This is because the early blocks mainly
process input prompts, while later blocks are more
involved in reasoning and token prediction.

Additionally, focusing on critical blocks identi-
fied in Figure 3 and applying masks only to those
blocks yields similar or better results than masking
all layers shown in Table 3. In 1.3B model, modify-
ing 8 layers instead of all blocks results in a 0.16%
lower MA and a 0.16% improvement in ACC, in-
dicating that selective modification can improve



Table 3: Performance comparison when inserting masks
in different Transformer blocks within the LLMs.

unlearning while preserving model performance.

4.5 Performance from Privacy Perspective

To assess whether unlearned LLMs truly elimi-
nate the memorization of unlearned data, we adopt
MIAs (Mattern et al., 2023b; Niu et al., 2024) to
evaluate the performance of NeuMuter from a pri-
vacy perspective. In our experiment, we conduct
a loss-based MIA in LLMs (Bărbulescu and Tri-
antafillou, 2024). More details about the MIA are
provided in the Appendix B.3. Figure 4 shows the
probability density curves of the membership infer-
ence attack (MIA). NeuMuter consistently offers
strong privacy guarantees across models of differ-
ent sizes, with significantly lower loss distances to
validation data after unlearning compared to the
original model. In the GPT-Neo (1.3B) model,
NeuMuter shows 19 unlearned samples with loss
distances in the range [0, 0.5], compared to 15 for
SGA and 7 for GA. Although IG performs better
than NeuMuter in the GPT-Neo (2.7B) model, it
severely harms model utility, as shown in Table 2.

Furthermore, we observe that NeuMuter and GA
show long-taileddistributions, with more samples
exceeding higher thresholds than SGA or IG. In
the GPT-Neo (1.3B) model, NeuMuter and GA
have 4 and 15 samples with loss distances over
1.00, respectively, while SGA only has 2. This
is because SGA treats each sequence individually
during unlearning. GA, however, sometimes leads
to over unlearning, as seen in the GPT-Neo (2.7B)
model, where 4 samples have loss distances greater
than the maximum observed in the original model.

5 Evaluation on TOFU Benchmark

To further evaluate NeuMuter, we utilize the re-
cently introduced TOFU benchmark and compare

it against the MU methods included in the bench-
mark. More details are shown in Appendix D.

Figure 5 presents the unlearning results in terms
of forget quality and model utility for synthetic
unlearned profiles at 1%, 5%, and 10%. The re-
sults show that NeuMuter outperforms all baselines
across different scenarios, closely matching the
MU performance of the retrained model. Our find-
ings demonstrate that effective MU can be achieved
without compromising model utility and without re-
lying on the remaining training set. It can preserve
model utility, especially when the unlearned set is
larger (e.g., 5% or 10%). NeuMuter also achieves
higher p-values in forget quality, indicating better
alignment with the retrained model. For the 1%
unlearned set, all baselines show near-vertical tra-
jectories, suggesting easier unlearning. However,
their forget quality is still lower than NeuMuter’s.
As the unlearned data increases, unlearning trajec-
tories become unstable. With 5% unlearned data,
GA and KL improve forget quality but at a sig-
nificant cost to utility, making them difficult to
fine-tune. At 10%, GD achieves forget quality sim-
ilar to NeuMuter but struggles with utility. Overall,
methods using the retained set (e.g., GA) perform
better than those focusing on minimizing unlearned
set loss.

6 Conclusion

In this paper, we introduce NeuMuter, a practical
MU method that selectively modifies the interme-
diate outputs of merely 1% of the neurons in FFN
modules of LLMs. NeuMuter employs a trainable
masking mechanism within the FFN modules to
accurately identify neurons that store the memoriza-
tion of unlearned data. By modulating the outputs
of these neurons, NeuMuter effectively removes
undesired information while preserving model util-
ity—without requiring tuning the entire parameters
of LLMs on the remaining training data. Exten-
sive evaluation on nine datasets across four LLMs
demonstrates that NeuMuter not only achieves su-
perior MU performance but also preserves model
utility compared to existing MU methods.

Limitations

Despite the effectiveness of NeuMuter in remov-
ing the memorization of the training data in LLMs,
our current study has several limitations. First, we
follow previous work (Geva et al., 2021, 2022) and
assume that FFN modules within the Transformer



(a) MIAs on GPT-Neo (125M). (b) MIAs on GPT-Neo (1.3B). (c) MIAs on GPT-Neo (2.7B).

Figure 4: The results of MIA for NeuMuter and the comparison methodson on 32 unlearned samples.

(a) Unlearned Data Size 1%. (b) Unlearned Data Size 5%. (c) Unlearned Data Size 10%.

Figure 5: Performance of NeuMuter on TOFU benchmark with respect to Phi-1.3B model. The size of the markers
corresponds to the number of epochs completed by different methods for MU.

blocks are the primary components of LLMs re-
sponsible for memorizing the information of train-
ing data. As a consequence, our method is focused
solely on the localization of knowledge neurons
within FFNs, without considering other critical
model components, such as self-attention modules.
Future research exploring how other model mod-
ules contribute to the memorization of training data
could further enhance our MU method and pro-
vide a more comprehensive understanding of MU
process.

Second, while our method reduces the risk of
verbatim recall of training data, it relies on a lim-
ited set of evaluation metrics. Incorporating more
diverse evaluation metrics, particularly those focus-
ing on interpretability and model behavior, would
offer a more holistic assessment of our approach’s
effectiveness. Such metrics could help identify po-
tential weaknesses in our method that are not fully
captured by the current evaluation framework of
MU.

Additionally, due to computational constraints
and the Source unknowability of LLM training
data, we have not conducted experiments on very
large-scale models such as LLaMA2 and LLaMA3.
Future work could address the scalability of our
unlearning algorithm, testing it on larger models
and exploring its applicability to a broader range

of unlearning tasks and benchmarks. This would
help establish the generalizability and robustness
of our approach across different model sizes and
domains.
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A Related Work

A.1 Machine Unlearning

MU is first introduced by Cao et al. (Cao and Yang,
2015) and has since been widely studied in image
classification tasks. MU aims to modify model pa-
rameters to eliminate the influence of specific data
points or classes in image classification without re-
quiring the model to be retrained from scratch after
removing the unlearned data. In the literature, ex-
isting MU methods fall into two categories: exact
unlearning and approximate unlearning.

Exact unlearning involves retraining the model
from scratch after removing specific training data
points. Bourtoule et al. (Bourtoule et al., 2021) pro-
pose SISA, which divides training data into shards,
trains sub-models on each shard, and aggregates
them. When an unlearning request arrives, only
the relevant fragment is retrained. However, this
approach comes with significant computational de-
mands and requires access to the entire training
set (Liu et al., 2024a). Wu et al. (Wu et al., 2022)
introduce a framework that models how each indi-
vidual training sample affects the model’s perfor-
mance across various criteria, and it removes the
influence of the unlearned data. Golatkar et al. (Go-
latkar et al., 2021) propose an unlearning method,
where the model is split into two parts: one that
retains core data that does not need to be unlearned
and remains unchanged, and another that undergoes
unlearning with bounded parameters. While these
methods are computationally efficient, they require
extra storage to keep the intermediate parameters
of different model slices and their corresponding
training subsets.

To address these challenges, recent works have
shifted towards scalable and effective approximate
unlearning methods. Guo et al. (Guo et al., 2020)
and Sekhari et al. (Sekhari et al., 2021) propose
provably efficient unlearning methods based on
Newton update removal mechanisms, leveraging
the concept of differential privacy (DP) (Abadi
et al., 2016). Golatkar et al. (Golatkar et al., 2020)
propose Fisher Forgetting to scrub the information
about the unlearned data by adding noise, calcu-
lated based on influence functions, to the parame-
ters of the DNN model. However, these algorithms
require the computation of second-order informa-
tion (Hessian) of the loss function, which is pro-
hibitively expensive due to the size of the param-
eters. Chundawat et al. (Chundawat et al., 2023)
achieve unlearning by minimizing the divergence
between a randomly initialized teacher model and
the student model on unlearning data. Kurmanji
et al. (Kurmanji et al., 2024) introduce a scalable
unlearning model by using a teacher-student frame-
work to selectively forget data, while addressing
scalability and performance issues in MU. Huang
et al. (Huang et al., 2024) adopt a meta-learning
approach to optimize the unlearning process by
leveraging feedback from a small subset of the re-
maining data. Yet, these training-based methods
can get inefficient when the original dataset gets
larger in scale. In addition, some research shifts
the spotlight from the entire model parameters to
specific, influential weights. Foster et al. (Foster
et al., 2024) propose Selective Synaptic Dampen-
ing (SSD) method that identifies specific model
parameters crucial for memorizing certain data by
calculating the fisher information matrix. Fan et
al. (Fan et al., 2024) propose saliency unlearning
(SalUn) that identifies specific model weights by
calculating the weight saliency map.

A.2 Machine Unlearning in LLMs

Given the vast amount of data and the large scale
of the models involved in the training process, tra-
ditional MU methods are often impractical for ap-
plication to LLMs due to their computational de-
mands. LLM unlearning aims to remove the mem-
ory of training examples that users request to be
erased from LLMs after training is completed, with-
out affecting the model’s performance on other data.
Jang et al. (Jang et al., 2023) simply change the
gradient descent to the opposite direction during
language modeling to increase the model errors on
the textual sequences to be unlearned. Buarbulescu



et al. (Bărbulescu and Triantafillou, 2024) propose
SGA, which performs selective gradient ascent dur-
ing the unlearning process based on the degree
of memorization of each unlearned text sequence
within the LLM, continuing until there are no more
elements above the unacceptable memorization
threshold. Unfortunately, Maini et al. (Maini et al.,
2024) demonstrated that gradient ascent itself in
these methods fails to provide a satisfactory bal-
ance between forget quality and model utility.

To address this issue, some works assume that
retained data can be utilized to maintain model util-
ity (Wang et al., 2023; Chen and Yang, 2023; Yao
et al., 2024; Zhang et al., 2024a). For example,
Chen et al. (Chen and Yang, 2023) simultaneously
perform gradient ascent on the unlearned data while
minimizing the KL-divergence between the output
from the updated model and the original model on
the retained data, in order to maintain model perfor-
mance in downstream classification and generation
tasks. Similarly, Yao et al. (Yao et al., 2024) exe-
cute gradient descent or compute KL-divergence
on the retained data to balance unlearning effective-
ness with utility.

However, obtaining the retained dataset is often
infeasible (Bărbulescu and Triantafillou, 2024; Yao
et al., 2024). Additionally, Yao et al. (Yao et al.,
2023) and Liu et al. (Liu et al., 2024b) propose
using normal datasets (e.g., TruthfulQA) to ensure
that unlearning harmful knowledge does not jeopar-
dize responses to non-harmful prompts. However,
there is no clear consensus on how to select a nor-
mal dataset that ensures the model’s utility remains
unaffected.

It can be observed that most LLM unlearning
methods require fine-tuning the model to update pa-
rameters and need additional retained data to main-
tain model performance. However, in real-world
applications, fine-tuning LLMs typically demands
substantial resources for costly computations, and
the retained data is often difficult to obtain due
to privacy and storage issues. Against this back-
ground, we consider a highly constrained scenario
and propose a practical unlearning method that
only requires access to the unlearned data without
necessitating fine-tuning the whole model.

B Experiment Setup

B.1 Models and Datasets.

Pre-trained LLMs. In our experiments, we fol-
low existing MU works (Jang et al., 2023; Kassem

et al., 2023; Bărbulescu and Triantafillou, 2024)
and use the GPT-Neo model family (125M, 1.3B,
2.7B) (Black et al., 2021), pre-trained on the Pile
dataset (Gao et al., 2020), to perform a fair compar-
ison with existing works.
Unlearned Data. The unlearned samples are se-
lected randomly from the Training Data Extraction
Challenge3 (Jang et al., 2023). This challenge pro-
vides a dataset containing 15,000 samples from the
pre-trained GPT-Neo family models. Each sample
consists of 200 tokens and has been shown to be
memorized by the GPT-Neo models, making them
hard to be unlearned.

B.2 Evaluation Metrics.

We evaluate NeuMuter in terms of both unlearning
effectiveness and model utility.

From the effectiveness perspective, we use mem-
orization accuracy (Jang et al., 2023) and extrac-
tion likelihood (Jang et al., 2023) to quantify the
memorization of LLMs with respect to the given
unlearned data. Additionally, we perform a loss-
based membership inference attack (MIA) on the
unlearned LLMs to assess how much information
about the unlearned data remains in the model, fol-
lowing the approach in (Bărbulescu and Triantafil-
lou, 2024).

Memorization Accuracy (MA). This metric mea-
sures the ratio at which the model’s prediction of
the next token matches the original token in the
unlearned data:

MA(x) =

∑T−1
t=1 1[argmax(pθ(·|w<t) = wt]

T − 1
.

(15)
Extraction Likelihood (EL). This metric mea-

sures the overlap between the generated output of
the unlearned LLMMθ(w<t) and the unlearned
sample w≥t:

ELn(x) =

∑T−n
t=1 Overlapn(M(w<t), w≥t)

T − n
,

(16)
where Overlapn measures the length of the n-gram
overlap between the unlearned sample and the gen-
erated output.

As for the utility, we quantify the performance of
the unlearned LLMs using various metrics, includ-
ing classification accuracy on NLP classification
tasks, F1 score and cross-entropy loss on dialogue

3https://github.com/google-research/lm-extraction-
benchmark



reasoning benchmarks, and perplexity on the vali-
dation corpus.

Classification Accuracy (ACC). We use stan-
dard classification accuracy in ML field. Specif-
ically, we measure accuracy on 9 popular NLP
classification tasks, including ARC-Easy and ARC-
Challenge (Clark et al., 2018), COPA (Gordon
et al., 2012), Lambada (Paperno et al., 2016), Wino-
grande (Sakaguchi et al., 2021), PubMedQA (Jin
et al., 2019), PIQA (Bisk et al., 2020), Hel-
laSwag (Zellers et al., 2019), and MathQA (Amini
et al., 2019). Consistent with established practices,
we report the average accuracy across all classifica-
tion tasks.

F1 Score (F1) and Cross-Entropy (CE). We eval-
uate the generation capabilities of the unlearned
LLMs on four dialogue benchmarks: Wizard of
Wikipedia (WoW) (Dinan et al., 2018), Wizard of
Internet (WoI) (Komeili et al., 2021), Blended Skill
Talk (BST) (Smith et al., 2020), and Empathetic
Dialogues (ED) (Rashkin et al., 2018). For each
dialogue, we use the standard F1 Score and calcu-
late the CE loss of the generated outputs from the
unlearned LLMs with respect to the ground truth
content.

Perplexity (PPL). To assess the quality of the
generated outputs from the unlearned LLMs, we
calculate the perplexity on the validation corpora
of Pile (Gao et al., 2020) and Wikitext (Merity
et al., 2022) to evaluate the utility of the unlearned
models.

B.3 MIA Settings
MIAs aim to predict whether a given data sam-
ple was used to train the target model. Therefore,
the performance of MIAs can provide insight into
how much information about the unlearned data
is retained by the unlearned LLM. In our experi-
ment, we conduct a loss-based MIA for unlearning
in LLMs, following the latest work (Bărbulescu
and Triantafillou, 2024). The intuition is that if the
unlearned data did not contribute to the model’s
training, the loss of this data should be similar to
the loss of the validation data, which was not part
of the original training dataset. Therefore, we first
apply the unlearning methods to the original model
to forget 32 samples, and then conduct the MIA
to the unlearned models. We perform the above
process on models of different sizes and compare
the MIA results of the unlearned models with the
original model. We calculate the distance between
the loss on the unlearned data and the average loss

on the validation data, which is generated using a
bidirectional encoder in (Bărbulescu and Triantafil-
lou, 2024). A smaller distance indicates that the
MIA will be less successful, suggesting better pri-
vacy protection for the unlearned LLM. Conversely,
a larger distance implies that the MIA will be more
successful, leading to more privacy leakage.

B.4 Implementation Details.
Implementation Details. Following existing
work (Jang et al., 2023), we define an unlearned
sample x as having been forgotten if its ELn(x)
and MA(x) values are lower than the average ELn
and MA values for samples that were not seen
during training. We continue applying both the
comparison methods and NeuMuter until all un-
learned samples meet the threshold (i.e., all meth-
ods achieve consistent unlearning performance on
the unlearned data.), defined as:

ELn(x) ≤
1

|D′|
∑
x′∈D′

ELn(x
′),

MA(x) ≤ 1

|D′|
∑
x′∈D′

MA(x′), (17)

where D′ represents a validation corpus not seen
during training. We obtain the threshold (Jang et al.,
2023), which is the average EL10 and MA (Eq. 17),
by calculating from 10,000 randomly selected in-
stances from the Pile validation corpus, and the
results are shown in Table 11.

As for the settings for the comparisons, we use
the same learning rate of 5e-4 for GA as in its origi-
nal paper (Jang et al., 2023), since unlearning is per-
formed over the same data distribution. For SGA,
we set the memorization upper limit to y = 70%.
If the average memorization across the population
of textual sequences does not reach this level, we
continue unlearning by applying gradient ascent to
the top-k (where k = 1) most memorized samples
from Df , as described in the original paper (Băr-
bulescu and Triantafillou, 2024). For methods that
require the setting of unlearning strength τ , such
as TA and DI, we set τ to 3 and 8, respectively, to
achieve average EL10 and MA values below the
unlearning threshold.

For NeuMuter, we train the learnable mask for
E = 100 iterations, using hyperparameters λ =
500 and η = 5. We treat the hyperparameters β, γ,
and ξ as constants, following (Louizos et al., 2018),
with values β = 0.3, γ = −0.1, and ξ = 1.1.
We generate K = 5 neighbor samples for each



unlearned text using a pre-trained BERT (Kenton
and Toutanova, 2019), with a replacement ratio of
r = 1.

In all experiments, we set the number of un-
learned samples to 32 by default and randomly
select them from the dataset mentioned above. We
also perform five trials for each experiment and
present the average results across all experimental
settings. Lastly, in terms of hardware, all exper-
iments are conducted on two NVIDIA GeForce
RTX 4090 GPUs, each with 24 GB of memory.

C Additional Experimental Results

C.1 Performance on Downstream Tasks

We provide detailed experimental results for Ta-
ble 2 in the main text, including the accuracy on 9
text classification tasks as shown in Table 4, the F1
Score and CE on 4 text dialogue tasks as shown in
Table 5 and Table 6, and the PPL on 2 validation
corpora as shown in Table 7.

In Table 4, we can see that NeuMuter consis-
tently outperforms all other methods across multi-
ple classification tasks and model sizes. For mod-
els with parameters of 125M, 1.3B, and 2.7B, it
achieves the highest average accuracy of 42.67%,
49.87%, and 52.48%, respectively, surpassing the
other methods like GA, IG, and DI. Notably, Neu-
Muter excels in reasoning tasks (e.g., ARC-E,
ARC-C) and commonsense reasoning tasks (e.g.,
Piqa, MathQ), with significant improvements in
larger models. Its robustness and consistent per-
formance across tasks make it a strong unlearning
approach for language models, particularly when
scaling to larger sizes.

In Table 5 and Table 6, the F1 scores and CE
loss for dialogue tasks demonstrate that NeuMuter
consistently outperforms or is competitive with
other methods across all models. In terms of F1
scores, NeuMuter achieves the highest average per-
formance, with scores of 10.23, 12.10, and 12.39
for the GPT-Neo models with 125M, 1.3B, and
2.7B parameters, respectively. These scores are
notably higher than those of GA, SGA, and IG,
and are comparable to or slightly better than DI,
indicating NeuMuter’s superior ability to preserve
the model utility in generating balanced predictions
across a variety of dialogue tasks.

Furthermore, NeuMuter also excels in minimiz-
ing CE loss, with values of 3.83, 3.26, and 3.14
for the same models. These results are lower than
those of GA, SGA, and IG, further illustrating Neu-

Muter’s capacity to reduce prediction error and
improve model efficiency. Overall, NeuMuter’s
strong performance in both F1 score and CE loss
highlights its effectiveness as a robust unlearning
method.

Table 7 demonstrates the effect of various un-
learning methods, including NeuMuter, on the per-
plexity of models evaluated on the Pile and Wiki-
Text corpora. NeuMuter consistently shows strong
performance, achieving lower average PPL com-
pared to most other methods. For the GPT-Neo
model with 125M parameters, NeuMuter achieves
an average PPL of 39.17, significantly outperform-
ing methods like GA (638.23), SGA (803.82), and
IG (200.85), and also surpassing TA (120.15) and
DI (39.90). For the 1.3B model, NeuMuter leads
with a PPL of 17.92, outshining GA (7103222.30)
and IG (246.38), and performing similarly to TA
(47.20) and SGA (50.91). In the case of the 2.7B
model, NeuMuter achieves an average PPL of
16.52, slightly better than DI (16.88) and much
lower than GA (5231639.15) and IG (341.15), with
TA (24.15) and SGA (298.52) performing worse.
Overall, NeuMuter outperforms GA and IG and
competes well with other methods like DI and TA,
suggesting it effectively reduces perplexity while
maintaining model efficiency.

C.2 Generation Examples of Unlearned
LLMs

We record the output of the LLMs before and after
applying NeuMuter and compare the differences
in the generated content with respect to the same
unlearned sample. Specifically, we take the first
100 tokens of each unlearned sample (with a total
length of 200 tokens) as the prefix and ask both
the original and unlearned LLMs to generate the
next 100 tokens as the suffix. We then compare the
overlap between the models’ outputs, both before
and after unlearning, with the correct suffix.

Table 14 presents three examples to demonstrate
how NeuMuter protects against extraction attacks.
The results show that the original model generates
content that perfectly matches the correct suffix.
After applying NeuMuter unlearning, the model
generates content that is contextually similar to the
original suffix based on the prefix but distinct from
the correct suffix.

C.3 Efficiency of NeuMuter
Efficiency is a crucial factor in evaluating the prac-
ticality of MU methods. To demonstrate the ef-



Table 4: Classification accuracy on 9 text classification tasks.

Table 5: F1 scores on 4 text dialogue tasks

ficiency of NeuMuter, we measure the time con-
sumption required for NeuMuter and the baselines
to unlearn 32 samples using the GPT-Neo models.
We also analyze the proportion of the GPT-Neo
models’ parameters that need to be modified by
each method, with the results summarized in Ta-
ble 9.

From these results, we can see that NeuMuter
requires the minimal computational overhead com-

Table 6: CE loss on 4 text dialogue tasks.

pared with existing MU methods. For the 1.3B
parameter model, NeuMuter achieves the lowest
MA of 30.89% while requiring only 9.68 minutes.
Since NeuMuter only inserts trainable masks into
the FFN module of each Transformer block, the
number of trainable parameters in NeuMuter is
proportional to the number of layers and the dimen-
sions of the FFN’s hidden states. For the GPT-Neo
models with 125M, 1.3B, and 2.7B parameters, the



Table 7: PPL on 2 validation corpora.

Table 8: Impact of the number of neighbor samples K
on NeuMuter with respect to GPT-Neo (1.3B).

trainable parameters of NeuMuter account for just
0.03%, 0.01%, and 0.01% of the total model param-
eters, respectively. In contrast, fine-tuning-based
MU methods, such as GA, TA, SGA, and DI, re-
quire fine-tuning all model parameters. This is the
main reason for that NeuMuter is able to efficiently
achieve the goal of MU in LLMs.

In addition, we observe that SGA incurs higher
computational overhead than GA under the same
conditions due to the need to test the memorization
level of each sample at the end of each epoch. IG
exhibits the worst performance in terms of compu-
tational complexity. Although IG does not require
model fine-tuning or the insertion of additional
trainable parameters, it requires multiple gradient
computations for each token in every sample, re-
sulting in substantial time costs. This makes IG
almost impractical for unlearning tasks in LLMs.

Table 9: Time consumption and trainable parameter
ratio of NeuMuter and the comparisons.

Table 10: Impact of the number of replacement ratio r
on NeuMuter with respect to GPT-Neo (1.3B).

C.4 Impact of Neighbor Sample Generation

In this section, we evaluate the impact of the neigh-
bor samples on the performance of our NeuMuter.
We conduct experiments focusing on two main
hyper-parameters of NeuMuter: the number of
neighbor samples K used to maintain model per-
formance and the replacement ratio r of original
tokens in the unlearned samples.

C.4.1 Impact of Size of Neighbor Samples
We apply NeuMuter to GPT-Neo with 1.3B param-
eters to unlearn 32 samples, while keeping other
hyperparameters fixed and varying K for each tar-
get sample from 1 to 5. We report the model’s MA
on the forgotten set after each unlearning process,
as well as the average accuracy across 9 text clas-
sification tasks, and the average F1 score and CE
loss across 4 dialogue tasks. As shown in Table 8,



Table 11: Threshold of EL10 and MA Metrics for GPT-
Neos.

Table 12: MA on Neighbor Samples vs. Validation
Corpus.

increasing K slightly improves NeuMuter’s perfor-
mance on the remaining data. When K is set to
5, the unlearned model shows improvements in F1
score and PPL after applying NeuMuter, but the
gains are limited. Specifically, increasing K leads
to higher computational time costs. When computa-
tional resources are limited, using fewer neighbors
helps strike a better balance between performance
and efficiency.

C.4.2 Impact of Replacement Radio of
Neighbor Samples

Similarly, we apply NeuMuter to GPT-Neo (1.3B)
model to unlearn 32 samples, while varying r of
original tokens in the generation of neighbors from
0.01 to 1, keeping other hyperparameters fixed.
From the results in Table 10, we can see that when
r is very low, NeuMuter significantly impacts the
model’s performance after forgetting the target sam-
ples. This occurs because the generated neighbors
retain much of the knowledge from the original
text, leading to instability during the mask training
process. As a result, the utility of the unlearned
model is relatively reduced while achieving compa-
rable forgetting performance. As r increases, more
key information from the original text is replaced,
which helps obscure the specific characteristics of
the original data. For example, when r = 1, the
unlearned model’s accuracy on text classification
tasks improves by 1% compared to when r = 0.01.
This is because as the replacement ratio increases,
more key information from the original text is re-
placed, allowing NeuMuter to better identify neu-

rons that are highly relevant to the unlearned data,
which in turn enhances the stability of the mask
training.

C.4.3 Information Leakage of Neighbor
Samples

Actually, the neighborhood dataset we created does
not cause any information leakage from the un-
learned data. We use a Masked Language Model
(MLM, e.g., BERT), whose training data excludes
the unlearned data, to generate a neighborhood
sample for each unlearned sentence. Specifically,
we start from the first token of the unlearned sen-
tence and proceed sequentially to the last, masking
one token at a time and using BERT to predict its
replacement. Since BERT is not trained on the un-
learned data and thus is unaware of the unlearned
data’s information, the generated neighbors can
replace sensitive content with benign alternatives
while preserving grammatical structure and general
semantic context.

To further verify that the neighborhood dataset
does not involve information leakage, we evalu-
ate the memorization accuracy (MA) of the target
model on the neighborhood dataset as shown in ta-
ble 12. The MA values on the neighborhood dataset
are comparable to or lower than those on the valida-
tion corpus, indicating that no information leakage
has occurred.

D Additional Information on TOFU

Very recently, the TOFU benchmark (Maini et al.,
2024) is proposed to investigate the issue of
whether the unlearned model and the retrained
model are indistinguishable, and is adopted for
evaluation by many studies (Zhang et al., 2024a;
Gao et al., 2024; Zhang et al., 2024b; Mekala et al.,
2024). Therefore, we also use the TOFU bench-
mark to further evaluate the performance of our
NeuMuter and compare it with the MU methods
included in the benchmark.

D.1 Experiment Setup
Dataset. The TOFU benchmark (Maini et al.,
2024) provides a dataset of synthetically generated
biographies for 200 fictional authors, created by
GPT-4. Each biography consists of 20 question-
answer pairs. A subset of these profiles, called the
“forget set", serves as the unlearned data, while the
remaining profiles are referred to as the “retain set",
which the model is expected to retain after unlearn-
ing. Specifically, the MU task involves unlearning



1%, 5%, and 10% of the biographies from an LLM
that has already been fine-tuned on data from all
200 authors.

Additionally, TOFU includes two datasets re-
lated to real-world authors and world facts from var-
ious domains, which are used to test the retention of
useful knowledge after LLM unlearning. The Real
Authors set includes question-answer pairs about
authors in the real world and often deals with neigh-
bor concepts entangled with those in the unlearned
set. The Real World set contains commonsense
knowledge about the real world and is designed to
test the performance on general world knowledge
of the unlearned model.
Pre-trained LLMs. In the TOFU benchmark,
since the synthetic biographies have not partic-
ipated in the training process of the pre-trained
LLMs, we fine-tune the pre-trained LLM on this
dataset to enable it to memorize these biographies.
In this experiment, we use a fine-tuned Phi-1.5B4

on the TOFU dataset as the targeted LLM that
needs unlearning the forget set.
Evaluation Metrics. To measure the effectiveness
of NeuMuter, we use the evaluation metrics pro-
posed in the TOFU benchmark (Maini et al., 2024),
which focus on Forget Quality and Model Utility.

Forget Quality measures how closely the output
of the unlearned model matches the output of a
retrained model that was trained only on the re-
tained data, in distribution. We calculate the truth
ratio on the unlearned set for both the retrained and
unlearned models, producing two different distri-
butions. Specifically, we perform the Kolmogorov-
Smirnov test and compute the p-value. A large
p-value indicates that the two models are indistin-
guishable in terms of their truth ratio.

Model Utility is aggregated as the harmonic
mean of 9 results: the probability, ROUGE, and
truth ratio from each of the three datasets: the re-
tain set, the real author set, and the world facts
set. Specifically, the definition of each metric is
provided below.

• Probability. Given an input sequence of
TOFU x = [q, a], where q represents the
question, a is the answer, and |a| denotes the
number of tokens in the answer. On the re-
tain or forget set, we calculate the normal-
ized conditional probability P (a | q)1/|a|.
On the real authors and world facts subsets,
the TOFU dataset provides multiple answer

4https://huggingface.co/locuslab/tofu_ft_phi-1.5

choices {a1, · · · , an} for each question q,
where only one answer is correct. Assum-
ing that a1 is the correct answer, we compute
the probability as follows:

Probability =
P (a1 | q)1/|a1|∑n
i=2 P (ai | q)1/|ai|

. (18)

• ROUGE. We compute the ROUGE-L recall
score (Lin, 2004) between the ground truth
and the answers generated by the unlearned
LLM.

• Truth Ratio. Specifically, For a given ques-
tion, the truth ratio is computed to approxi-
mately compare how likely its correct answer
is to an incorrect answer, formulated as:

Rtruth =

1
|Apert|

∑
â∈Apert

P (â | q)1/|â|

P (ã | q)1/|ã|
, (19)

whereApert = {â1, â2, · · · } represents the set
of perturbed answers and ã is the paraphrased
answer with GPT-4. The truth ratio takes the
mean of the conditional probabilities of per-
turbed answers and normalizes it by the con-
ditional probability of the correct paraphrased
answer.

Baseline Methods. In this paper, we compare the
performance of our NeuMuter against all baselines
included in the TOFU benchmark (Maini et al.,
2024), such as GA (described in Section 4), Gradi-
ent Difference (GD), KL Minimization (KL), and
Preference Optimization (PO).

• Gradient Difference (GD). In contrast to GA,
this method not only aims to increase the loss
on the forget set Df , but also performs gra-
dient descent on the retain set Dr, thereby
reducing the decrease in model utility.

• KL Minimization (KL). This method main-
tains the model’s performance on the remain-
ing data by minimizing the KL divergence
between the predictions on Dr of the origi-
nal (fine-tuned on TOFU) and the unlearned
model, while achieving unlearning by maxi-
mizing the conventional loss on Df .

• Preference Optimization (PO). This method
aims to adjust the model to avoid revealing
information about specific authors by modi-
fying its responses. It computes the loss for



Table 13: Performance of NeuMuter on TOFU bench-
mark with respect to LLaMA-2-7B model.

a question paired with an alternative answer,
such as "I do not know the answer," to prevent
the model from outputting information about
the relevant author.

D.2 Performance on Larger Model

To further evaluate NeuMuter, we conduct experi-
ments on a larger language model, LLaMA-2-7B,
using synthetic unlearned data at varying scales
(1%, 5%, and 10%). Table 13 reports the unlearn-
ing performance across these different unlearn-
ing proportions. Consistent with prior results on
smaller models, we observe that NeuMuter outper-
forms all baseline methods in terms of both model
utility and forget quality. Specifically, NeuMuter
achieves utility scores comparable to the original
model while significantly improving forget qual-
ity, closely approaching the performance of the
retrained model.

When the unlearned set is small (1%), most base-
lines exhibit reasonable utility but suffer from poor
forget quality. NeuMuter, by contrast, achieves a
near-optimal balance. As the size of the unlearned
data increases to 5% and 10%, many baselines (e.g.,
GA, KL, PO) either severely degrade in utility or
fail to unlearn effectively. NeuMuter stands out by
maintaining high utility even under larger unlearn-

Algorithm 1 NeuMuter

ing demands, demonstrating both robustness and
scalability.

E Pseudocode

The Pseudocode of NeuMuter is shown in Alg. 1.



Table 14: Examples performing extraction attacks on token sequences. The coloured part denotes the model
generated text given the prefix of length 100 as input. Green indicates that the part is generated based on a prefix
that is identical to the original text, and red indicates that it is not. For the extraction attack, we utilize a naïve greedy
decoding strategy.
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