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Abstract—Federated learning (FL) is a distributed learning
paradigm that enables multiple clients to train a unified model
without sharing their private data. However, recent works demon-
strate that FL models are vulnerable to membership inference
attacks (MIAs), which can infer whether a data sample was used
to train a given FL model. Existing countermeasures either re-
quire far-reaching modifications of FL training process or enforce
extra processing in prediction phase, yielding them unlikely to
be applied well in practice. In this paper, we design a post-
protection mechanism, dubbed P2-Protection, which degrades
the inference performance of MIAs by simultaneously poisoning
the prediction and gradient of the target FL model to reduce
the privacy leakage of training data while keeping the model
prediction accuracy. P2-Protection only involves one additional
training round to embed the poisoned prediction and gradient
into the target FL model, without requiring model retraining
or training process modification. We evaluate P2-Protection and
compare it with two state-of-the-art defenses against three MIAs
on five realistic datasets. Experimental results show that P2-
Protection outperforms the existing defenses by offering limited
implement overhead and improved utility-privacy trade-off.

Index Terms—Federated learning, membership inference at-
tack, poisoned prediction and gradient.

I. INTRODUCTION

Deep learning (DL) has achieved extraordinary success in
many fields, such as image classification and medical diagno-
sis [1]. Such success mainly relies on the large-scale training
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data generated from different domains, which may contain
privacy sensitive information, including medical records or
personal locations. However, the training process of tradi-
tional centralized DL requires collecting all relevant data from
distributed sources to train the DL models, causing severe
concerns about data privacy and user confidentiality [2], [3].

Recently, federated learning (FL) [4], [5] has emerged
as a privacy-aware alternative to the decentralized learning
paradigm. FL enables multiple clients (such as organizations
or edge devices) to jointly train a unified model without their
personal data leaving the local devices. This is achieved by the
FL training process which consists of two main steps: training
local models on each client’s local data, and exchanging model
updates (e.g., the parameters and gradient of the local model)
between each client and the server to generate a unified FL
model. Without sharing data, FL thus allows addressing critical
issues such as data privacy, data leakage, and data access
rights, and so it has been utilized in a series of applications
in practice such as self-driving [6], medical research [7] and
smart healthcare [8].

Unfortunately, recent studies have revealed that the training
data information can be retrieved from the prediction and
gradient of the trained FL models by various attacks, such as
source inference attacks [9], property inference attacks [10],
and attribute inference attacks [11]. In this paper, we focus
on the so-called membership inference attacks (MIAs) against
FL models, where the adversary aims to infer whether a given
sample (i.e., the target sample) was used as part of the training
data of a given FL model (i.e., the target model) [12], [13].
MIAs pose severe privacy and security threats to FL models.
For instance, considering an FL diagnosis model trained on
the data distributed across multiple medical institutions, if an
adversary knows a target sample was used to train this model,
then the attacker can directly infer the data owner’s health
status. Beyond privacy, since providing the training data is
a product of massive costs and expertise efforts (including
data preprocessing and annotation), MIAs also damage the
intellectual property of the training data [14], [15].

To mitigate the risk of membership leakage in FL models,
multiple countermeasures have been proposed. Since overfit-
ting (i.e., the prediction gap between training and test data)
is a major reason of membership information leakage [16], a
widely recognized manner of defenses [17], [18] is to reduce
the overfitting level by interfering in the training process of the
target model. Other lines of defenses including using differ-
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ential privacy (DP) [19], [20], introducing feature obfuscation
to the target model [21], or restricting the whole prediction
functionality of the target model [16], [22]. Nevertheless,
while these defense approaches can enhance the membership
privacy of the target models, they often involve modifications
to data features, model gradients, and prediction processes,
which may compromise the model’s predictive performance.
Moreover, these countermeasures either require far-reaching
modifications of FL training process, or enforce extra process-
ing in prediction phase, yielding them unlikely to be applied
widely in practice, particularly for FL models that have already
been trained but still require protection.

In this paper, we propose an MIA defense for trained FL
models, dubbed P2-Protection, which simultaneously Poisons
the prediction and gradient as a Post-Protection for trained FL
models against MIAs. The success of current MIAs primarily
stems from the inherent overfitting tendency of FL models,
which results in distinct patterns in model predictions and
gradients between training and testing data. MIAs exploit this
discrepancy to breach the membership privacy of the target FL
models. Therefore, the core idea of our proposed P2-Protection
is to obscure these prediction and gradient patterns between
training and testing data, thereby increasing the difficulty
of performing MIAs. Specifically, we introduce controlled
perturbations to the predictions and gradients of the target
model on its training data, aiming to maximize their deviation
from the original values in order to protect membership
privacy in FL models. To implement this, we perform an
additional FL training round in which we embed carefully
designed perturbations into the model. With our poisoned
perturbations, P2-Protection could mitigate the membership
information contained in the model’s prediction and gradient,
thus significantly degrading the performance of existing MIAs
while keeping the model prediction accuracy.

As a practical solution designed for MIA defense, P2-
Protection involves only one additional training round for FL
models, and can be used for any trained FL models without
retraining or modifications. We evaluate P2-Protection by
defending against three state-of-the-art MIAs, and the results
demonstrate that our protection could alleviate the leakage risk
of the membership privacy of FL models.

We summarize our major contributions as follows:

• We propose P2-Protection, an after-training defense
against MIAs for FL models, which does not require the
modification of the existing FL training process or FL
paradigm, and is able to defend against attacks with even
white-box information.

• We exploit the intrinsic correlation between the prediction
and gradient of the model, and unify gradient poisoning
and prediction poisoning for FL models into a utility-
constrained optimization problem. Compared with exist-
ing works, our method can achieve an improved utility-
privacy trade-off of FL models.

• We evaluate P2-Protection and compare it with two state-
of-the-art defenses against three MIAs on five realistic
datasets, and the results demonstrate the effectiveness and
efficacy of our defense. The code has been released for

reproducibility purposes1.
The remainder of this paper is structured as follows. Sec-

tion II presents some preliminary knowledge on FL and MIA.
Section III describes the threat model. Section IV details the
design of P2-Protection. Section V provides the performance
evaluation and Section VI reviews some related works. Finally
Section VII concludes the paper.

II. PRELIMINARY

A. Federated Learning

FL enables multiple clients to jointly train a model without
sharing their data. In a typical paradigm of FL, there is a server
S controlling the training process and M clients owning their
own dataset Di(i = 1, 2, . . . ,M). The central server organizes
the model training process, by repeating the following steps
until the training is stopped:
Step 1. All clients download the current global model ft, (t =
0, 1, . . . , T , where T is the total number of FL training epochs)
and the training setting from S.
Step 2. Each client trains its local model on Di. After the
local training, the client computes the model updates wi and
uploads wi to S.
Step 3. S collects w from all clients and aggregates the client
updates w =

∑M
i=1 αiwi, where αi is the client weight. Then

S updates the global model ft based on the aggregation and
thereby obtains an updated global model ft+1.

The above steps would be executed for T times until
satisfying the termination criteria, and the obtained global
model fT is the final trained FL model.

Currently, FL has two main paradigms, namely the horizon-
tal FL and the vertical FL [23], [24]. The former is applicable
to the scenarios where datasets of clients share similar features
but concern different users, while the latter is for situations in
which datasets of clients concern the same users but share
different features. Considering the wide application of the
horizontal FL in practice, we focus on defending MIAs for
the horizontal FL in our work.

B. Membership Inference Attacks

MIA aims to breach the membership privacy of the training
data of a model, and was first introduced [25] in a centralized
machine learning scenario. Formally, given a target model f
and a data sample x, MIA aims to determine whether x was
used to train f or not. We denote a data sample as a member
if it participates in the training process of the target model.

Existing MIAs can utilize the prediction or gradient of
the target model to infer the membership information. More
formally, the purpose of MIAs can be expressed as:

A(x, f |Ω(f))→ In/Out (1)

where A represents MIA attacking functionality, Ω(f) means
the obtained information about the target model, and In (resp.
Out) indicates that x is a member (resp. non-member).

For gradient-based MIAs, the attacker can get the target
model’s structure, parameters, and intermediate calculations.

1https://www.dropbox.com/s/ue2r59dys453tva/P2-Protection-Code.zip

https://www.dropbox.com/s/ue2r59dys453tva/P2-Protection-Code.zip
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On contrast, prediction-based MIAs assume the attacker has
no access to the internal information about the target model but
can only get the prediction probability or even the prediction
labels for an input sample. In this paper, we aim to poison both
the gradient and prediction of the target model, thus defending
against MIAs using different information of the target model.

III. THREAT MODEL

Different from previous works concentrating on FL training
process, we focus on the membership leakage in the post-
training scenario of FL models, i.e., after the FL model is
trained and released to FL clients. In such a scenario, previous
defenses which aim to protect the privacy during the FL
training phase may not defend against inference attacks when
the model is released due to their in-training operations. In-
stead, we consider how each client can achieve a post-training
protection for the published FL model without intervening
with the post-training phase, e.g., perturbing on the output
or restricting to Top-k probability outputs (we will discuss
these defenses in Section V-A). As a defender, the client can
only perform defending methodology during its local training
phase, whose objective is to minimize the privacy leakage after
the model is released. Our threat model are detailed as follows.

A. Attacker

Since our goal is to propose an MIA defense method for
FL models, we consider a strong MIA attacker with the full
access to the final trained FL model. Our assumed attacker,
who could be either the FL server or an FL client, can obtain
the FL model’s predictions and gradients and then infer the
membership information against other FL clients.
Attacker’s Knowledge. In our paper, we assume that the
attacker has full access to trained FL models, allowing them
to obtain detailed information about the models, including their
structure, parameters, intermediate computations such as acti-
vation values and gradients, and their predictions. Recognizing
that most MIAs involve the construction of an inference model
in a supervised manner, we further assume that the attacker
has access to a subset of the training samples. It is practical
since the FL server can access a portion of the training data
from all clients, and the FL client has the access to its own
local training samples. Note that this means the attacker has
almost all the information one can obtain, and our method is
able to defense against the strongest attacker.
Attacker’s Capability. We assume that the attacker is either
an FL server or an FL client, who can obtain the final trained
FL model. Therefore, the attacker can use the trained FL
model’s query interface to obtain predictions for input samples.
Moreover, the attacker can leverage the known internal details
of this model to compute the gradients with respect to a given
sample.
Attacker’s Goal. Given a target FL model and a target sample,
the attacker’s goal is to determine whether that sample was
utilized in the training of the model or not. Therefore, the
essence of this objective is to perform a binary classification,
categorizing the sample based on the available information
from the target model into one of two classes: member or

non-member. With the prediction and gradient of the target
model w.r.t. the target sample, the attacker can construct a
binary classifier to infer the membership property of the target
sample. Formally, we have:

A(x;P,G)→ In/Out (2)

where A is the inference model and x is the target sample.
P and G is the target model’s prediction and gradient w.r.t. x.
Furthermore, since the attacker could get a part of the training
data of the target model, the inference model A could be
trained with any supervised classification algorithms.

B. Defender

The defender aims to defend against MIAs from the pre-
diction probabilities and gradients of the trained FL model to
protect the membership privacy of FL clients’ training data.
In our proposed method, the defender is just the client who
is sensitive to data privacy leakage and aims to protect the
membership privacy of his local training data.

As a defender, each FL client could have the access to
its local training data. As for the defender’s capability, the
client has sufficient computation capability for local training
with local model, just as the routine FL setting. To enhance
the privacy preserving capability of the global model, the
defender can also launch another round of FL training after
the routine FL training is finished. In the additional training
round, the client could operate locally and submit elaborated
parameters of local model to the server. Then the server
collects the updated parameters from each client to update the
global model. Throughout the entire process, it is essential to
note that the protection mechanism is executed locally on the
defender’s device, and the server does not access the training
data. Consequently, the privacy of local data is preserved in
this mechanism, ensuring that our protection does not result
in any information leakage.

Given a trained FL model, the defender aims to leverage
data poisoning technique to achieve the following two goals.

• Privacy Goal. The inference model of MIA attacker is
inaccurate at distinguishing the members from the non-
members w.r.t. the given FL model.

• Utility Goal. The prediction performance of the pro-
tected FL model degrades within an acceptable range.

IV. DESIGN OF P2-Protection

A. Overview

In order to defend against MIAs in FL, we design P2-
Protection from the perspective of poisoning the prediction
and gradient of the target FL model that are leveraged by
the attacker to construct the inference attack models. P2-
Protection adds controlled perturbations to the prediction of
the target model on its training data, and embeds the perturbed
prediction into the target model to poison the corresponding
gradient. Then the federated central server collects the updates
of the FL clients, and updates the FL model with one more
round of training. Overall, P2-Protection mainly includes the
following two parts (c.f. Fig. 1 and Algorithm 1).
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Fig. 1: The framework of P2-Protection. After the FL training (the blue box at the upper left), each FL client downloads the
current global FL model as its local model, removes its membership information locally, and uploads the poisoning updates
(the right yellow box). Thereafter, the FL server collects and aggregates all updates from the FL client to form a secure FL
model (the yellow box at the lower left). Note that P2-Protection only runs one more round of FL training after the completion
of the main FL training process.

(1) Poisoning Local Models. Given the trained FL global
model f , each FL client first performs P2-Protection to get
the poisoned prediction ypoison of its training data. Then
the FL client locally trains the current global model with
its training data and the corresponding poisoned prediction,
thereby poisoning the gradient of the training data concerning
the current global model.
(2) Updating Global Model. After the first step of P2-
Protection, each client obtains a protected local model and
derives the model update w.r.t. the current global model. Then
the central server collects all the updates and renews the global
model with enhanced protection of P2-Protection from the
aggregation of the poisoned updates.

B. Poisoning Local Models
Poisoning Prediction and Gradient. After completing the
standard FL training process, P2-Protection would be executed
on every FL client first for protection. In particular, the ith FL
client initializes its local model f i(i = 1, 2, · · · ,M) with the
downloaded global parameters w from the server, and then
computes the clean prediction of f i on its local training data
yclean = f i(x) = (p1, p2, . . . , pC).

In the design of P2-Protection, we integrate the gradient
poisoning and prediction poisoning of an FL model in form
of a constrained optimization problem, which is constrained by
the model performance. It should be noted that the poisoned
gradient is derived from the poisoned prediction w.r.t. the
target model, which is the basis for our integrated poisoning of
both gradient and prediction. In order to simplify our solution,
we first define and find the deviation vector ydev that can
obtain the maximal gradient deviation from the gradient w.r.t.
yclean (c.f. line 6 of Algorithm 1). For simplicity, we assume

that ydev is the one-hot vector corresponding to the possible
labels. We use L2 norm to measure the gradient deviation
corresponding to ydev and yclean. Given yclean, we design
a simple maximizing gradient deviation (MGD) method to
compute the deviation vector ydev that satisfies:

ydev = arg max
ok,ok∈O

∥gclean − gk∥2 (3)

where gclean = ∇L(f(x), yclean), gk = ∇L(f(x), ok), L is
the training loss function of FL training process, and O is a
set that contains all possible one-hot formed vectors.

Then along the direction from yclean to ydev , we find a
poisoning vector ypoison, as a post-training label of x (c.f.
line 7 of Algorithm 1). Since poisoning the local model with
ydev directly may result in serious accuracy degradation but
not contributes much to privacy protection, we combine ydev
and yclean to get the poisoned prediction which can increase
the difficulty of MIAs but maintain the performance of the FL
model. The objective is formalized as follows:

arg max
ypoison

∥gpoison − gclean∥2

where ypoison = (1− α)ydev + αyclean

gpoison = ∇L(f(x), ypoison)
gclean = ∇L(f(x), yclean)

s.t. α ∈ [0, 1]

argmax
k

ykclean = argmax
k

ykpoison

(4)

In the above equations, α controls the balance of ydev (privacy)
and yclean (utility). To determine ypoison, we use binary
search to find α. Specifically, the optimization problem aims
to maximize the gradient deviation with respect to ypoison
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and yclean. Second, it ensures the prediction consistency of
yclean and ypoison for the premise that P2-Protection does not
change the prediction label of target model. In other words,
the gradient of ypoison and yclean are quite different but they
bring about a similar accuracy effect to the model.
Training Local Models. After determining ypoison of each
training sample, we next turn to embed the poisoned pre-
diction and gradient into the local FL model, aiming to
eventually remove the membership information of the training
data. As such, P2-Protection requires every client to perform
local training using (x, ypoison) to get the poisoned updates
wi

poison(i ∈ [1, 2, · · · ,M ]) (c.f. lines 8 and 10 of Algo-
rithm 1), which can poison the target model by perturbing
its gradient and prediction w.r.t. the training data.

C. Updating FL Global Model

Now that every FL client obtains a poisoning updates
wi

poison for local training data, embedding these updates into
the FL global model could remove the sensitive membership
information of original training data. The embedding process
is the exact same as FL aggregation: The FL central server
collects and averages the poisoning updates Wpoison =
[w1

poison,w
2
poison, · · · ,wM

poison] from all FL clients. We de-
note the current global model parameters as w. Then the server
updates the current global model (c.f. line 18 of Algorithm 1)
using:

ŵ = w +

M∑
i=1

ni

n
wi

poison (5)

where ni is the dataset size of the ith client, n =
∑M

i=1 ni,
and ŵ is the parameters of global model f̂ “poisoned” by
our defense. After removing membership information from the
global model, the global model can be released to the public
without worrying about the membership leakage.

Discussion. P2-Protection is a post-protection mechanism
designed to defend against MIAs, which introduces an extra
round of local model training and global model updating.
Intuitively, our method could be extended to the centralized
learning paradigm, given that the centralized paradigm can be
viewed as a special case of FL involving only one client. How-
ever, directly applying our method to central models would
incur substantial computational costs due to the necessity of
poisoning the model for every training sample. Although we
can choose to protect only a portion of training samples, the
challenge lies in determining the criteria for selecting these
specific samples. But in FL scenario, FL clients who are highly
sensitive to privacy issues can choose to adopt our approach,
which can significantly reduce the cost of our approach.

V. PERFORMANCE EVALUATION

A. Experimental Setup

1) Datasets and Models: We evaluate the performance of
our defense using six publicly available datasets, distinguish-
ing between independent and identically distributed (IID) and
non-IID settings.

Algorithm 1 P2-Protection
Require: the trained FL global model f
Output: the protected FL global model f̂

1: ▷ FL client executes:
2: for each client Ci, i ∈ {1, 2, · · · ,M} in parallel do
3: Dpoison = ∅
4: for each local training data (x, y) do
5: yclean ← f(x)
6: ydev ← MGD(f, (x, yclean))

// Get deviation vector with Eq. (3)

7: ypoison = PoisonPrediction(ydev, yclean)
// Get poisoning vector with Eq. (4)

8: Dpoison = Dpoison ∪ (x, ypoison)
9: end for

10: wi
poison = ComputeUpdate(f,Dpoison)

// Train local models
11: end for
12: return wi

poison

13: ▷ FL server executes:
14: Wpoison = ∅
15: for each client Ci, i ∈ {1, 2, · · · ,M} do
16: Wpoison = Wpoison ∪wi

poison // Collect updates
17: end for
18: ŵ = w+

∑M
i=1

ni

n wi
poison // Update model with Eq. (5)19: return f̂

Adult2. Adult contains 14 features (such as age, education,
and gender) and a target which shows whether a person’s
income is over $50K a year or not. It includes 48, 842 records
and we use it in a binary classification task.

MNIST3. It is a handwritten recognition dataset that con-
tains 10 classes of handwritten digits from 0 to 9. MNIST
contains 70, 000 digits formatted as 28×28 gray images. The
value of each pixel in the image is limited to 0 ∼ 255.

Purchases4. This dataset is based on Kaggle’s “acquire
valued shoppers” challenge dataset that contains shopping
histories for thousands of individuals. It totally consists of
197, 324 shopping records from customers and each record
contains purchase status of 600 kinds of products. We ran-
domly choose 16, 000 data records. Following [16], [18], we
use K-Means algorithm to cluster the dataset into 20 classes.
These 20 classes are regarded as new labels.

CIFAR-105. This dataset consists 60, 000 color images of
10 classes such as airplane, dog and bird. For each class, it
has 6, 000 images of size 32× 32.

FEMNIST6. Like MNIST, FEMNIST is a 62 classes hand-
written dataset (10 for digits from 0 to 9 and 26 for both
capital letter and lower-case letter, respectively) coming from
3, 550 users. It totally has 805, 263 images and each image has

2http://archive.ics.uci.edu/ml/machine-learning-databases/adult/
3http://yann.lecun.com/exdb/mnist/
4https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
5http://www.cs.toronto.edu/ kriz/cifar.html
6https://github.com/TalwalkarLab/leaf/tree/master/data/femnist
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TABLE I: The model structures for each dataset.

Dataset Model Structure

Adult 3 FC layers
MNIST 4 FC layers

Purchase20 4 FC layers
CIFAR-10 2 Conv., 2 Pool., and 3 FC layers
FEMNIST 4 FC layers
Celeb-A VGG16

28×28 gray-scale pixels. We randomly select 70, 000 samples
from FEMNIST.

CelebA7. CelebA is a large-scale face attribute dataset
containing over 200, 000 celebrity images with annotations.
In our experiments, we utilize it as a classification dataset
by randomly selecting facial pictures from 100 users and
evenly assigning them to various FL clients. We focus on four
attributes (mustache, wearing a hat, wavy hair, and young)
to categorize all pictures into 16 classes. Consequently, it
can be regarded as a 16-classification task with distinct data
distributions in each FL client.

For the IID datasets, including Adult, MNIST, Purchase, and
CIFAR-10, we evenly distribute the dataset to each client so
that there is no overlapping data between every two clients.
For the non-IID datasets, including FEMNIST and CelebA,
we employ a non-IID distribution by maintaining the original
data distribution of each client, reflecting a more realistic
scenario where data on different clients may have distinct
characteristics. Furthermore, for all datasets, we randomly split
each client’s data equally into a training set and a test set.

As for the model structures, we investigate the deep neural
network (DNN) and the convolutional neural network (CNN)
on aforementioned datasets. Table I shows the model structure
of each dataset. Particularly, the FC layer represents the fully
connected layer in DNN, and the Conv. (resp. Pool.) layer
means convolutional (resep. maxpooling) layer in CNN. For
face image dataset CelebA, we use VGG16 [26] network.

2) FL and P2-Protection Settings: We use FedAvg [27]
algorithm to train FL models. We set the number of clients
to 10 and the total global rounds to 10 unless otherwise
specified. In every global training round, FL clients locally
train their models for 10 epochs. For the local training, we
use SGD [28] with the learning rate of 0.005 (FEMNIST
with 0.05). Since P2-Protection is a post-training defense
mechanism, we configure it to perform only one additional
global round of training, encompassing 10 epochs of local
model training. Regarding the selection of the defense intensity
value, the parameter α in Eq. (4) is not statically set but
is dynamically optimized for each training sample from the
FL clients. Following the procedure of our algorithm, we
automatically determine the defense intensity values for the
samples in all datasets used in our experiments.

3) MIAs: To quantify the robustness of P2-Protection, we
evaluate the performance against five typical MIAs.

7http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Shadow Attack (S-Attack) [16]. It trains multiple shadow
models with the same structure as the target model to imitate
the prediction behavior. Then the attacker trains 50 attack
models on the gradient of shadow models to perform MIAs.

ML-Leaks [18]. Different from S-Attack, ML-Leaks builds
multiple sub-shadow models of different algorithms, which
further are combined as one shadow model. Then ML-Leaks
trains one attack model on the gradient of this combined
shadow model.

TEAR [12]. This attack leverages changes in adversarial
robustness that occur during the training process of the FL
model, and then constructs the attack model in a supervised
manner.

Gradient Attack (G-Attack) [29]. It builds an attack model
by using the target model’s gradient, and predicts the cluster
with a lower uncertainty as the member of the training set.

GD-Attack [30]. It calculates the difference between the
norm of the global FL model’s gradient updates and the norm
of the gradients after excluding the target sample from the
global model’s updates. If this difference is greater than zero,
the sample is predicted to be a member of the training set.

Note that the first three attacks utilize the prediction while
the last two attack uses the gradient of the target model.

We perform all the above attacks on randomly selected
samples from the FL clients’ training and test datasets, where
the number of members is set equal to the number of non-
members, in order to achieve a baseline accuracy of 0.5, which
is equivalent to the random guess.

4) Defenses: We compare our protection method with five
existing defenses.

DP-SGD [19], [20], [31]. DP-SGD is a DP based protection,
which introduces Gaussian or Laplacian noise to the parameter
gradient during the FL training process. In this paper, we
add Gaussian noise to the gradient updates, and adjust the
ϵ value across the range of 0.001 to 1.0, capturing both the
inference accuracy of G-Attack and classification accuracy
of FL models. From the results obtained with different ϵ
values, we select a preferred value, ϵ = 0.01, striking a
balance between fidelity and defense effectiveness. Besides,
since DP-SGD requires involvement in the training process of
FL models, we arrange for DP-SGD to participate in the entire
training of the target FL models.

Top-k masking [25]. With top-k masking, the attacker
can only get the top k prediction probabilities of the target
model, which could reduce the information utilized by MIAs.
Following Shokri et al. [25], we set k to 1 and 3.

Soteria [32]. Soteria is an FL training framework designed
to prioritize the protection of user privacy embedded within
the gradients. It generates a perturbation added to the acti-
vation values of FL models, ensuring that the perturbed data
representations closely resemble the true data representations
to preserve FL performance. Subsequently, the model updates
are computed using these perturbed representations, making
it challenging for an adversary to infer sensitive information
from the updates. We set its pruning rate at 80%, which means
all gradients are generated on the perturbed representation with
a pruning rate of 80%.
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TABLE II: Comparison of P2-Protection with the baseline defenses against five MIAs. Note that Top-1 and Top-3 masking
are ineffective against G-Attack, GD-Attack, and TEAR, as these attacks exploit model gradients and adversarial robustness,
which can be derived from the Top-1 prediction probability.

Dataset Defense
Method

Prediction
Accuracy

Attack Accuracy

S-Attack ML-Leaks G-Attack GD-Attack TEAR

Adult

No defense 0.843 0.52 0.52 0.625 0.663 0.690
DP-SGD 0.762 0.50 0.50 0.609 0.647 0.665

Top-1 - 0.50 0.51 - - -
Top-3 - - - - - -
Soteria 0.801 0.51 0.51 0.578 0.638 0.644
FedPass 0.835 0.49 0.51 0.590 0.626 0.640
HAMP 0.821 0.50 0.52 0.580 0.623 0.631

P2-Protection 0.830 0.50 0.50 0.574 0.605 0.620

MNIST

No defense 0.947 0.52 0.51 0.620 0.669 0.703
DP-SGD 0.777 0.48 0.48 0.588 0.630 0.652

Top-1 - 0.46 0.39 - - -
Top-3 - 0.49 0.49 - - -
Soteria 0.824 0.47 0.47 0.572 0.610 0.623
FedPass 0.923 0.48 0.49 0.581 0.621 0.637
HAMP 0.890 0.48 0.47 0.554 0.573 0.605

P2-Protection 0.937 0.46 0.48 0.540 0.564 0.674

Purchase20

No defense 0.898 0.58 0.53 0.648 0.690 0.702
DP-SGD 0.745 0.50 0.50 0.589 0.621 0.637

Top-1 - 0.50 0.48 - - -
Top-3 - 0.53 0.51 - - -
Soteria 0.805 0.51 0.52 0.565 0.593 0.606
FedPass 0.871 0.52 0.54 0.578 0.602 0.611
HAMP 0.853 0.51 0.50 0.539 0.567 0.582

P2-Protection 0.879 0.50 0.50 0.531 0.571 0.653

CIFAR-10

No defense 0.921 0.52 0.51 0.641 0.690 0.713
DP-SGD 0.835 0.51 0.50 0.625 0.652 0.660

Top-1 - 0.49 0.49 - - -
Top-3 - 0.52 0.51 - - -
Soteria 0.865 0.50 0.51 0.603 0.634 0.639
FedPass 0.913 0.50 0.51 0.594 0.641 0.657
HAMP 0.885 0.50 0.50 0.576 0.613 0.620

P2-Protection 0.904 0.50 0.58 0.605 0.613 0.681

FEMNIST

No defense 0.720 0.55 0.53 0.643 0.680 0.704
DP-SGD 0.577 0.48 0.46 0.605 0.631 0.651

Top-1 - 0.47 0.33 - - -
Top-3 - 0.49 0.48 - - -
Soteria 0.658 0.49 0.48 0.602 0.627 0.635
FedPass 0.709 0.49 0.49 0.607 0.630 0.648
HAMP 0.698 0.48 0.45 0.583 0.598 0.674

P2-Protection 0.712 0.47 0.46 0.582 0.589 0.692

CelebA

No defense 0.856 0.65 0.67 0.836 0.874 0.892
DP-SGD 0.785 0.58 0.58 0.775 0.824 0.854

Top-1 - 0.58 0.57 - - -
Top-3 - 0.62 0.60 - - -
Soteria 0.812 0.56 0.57 0.759 0.742 0.760
FedPass 0.850 0.58 0.60 0.734 0.746 0.768
HAMP 0.827 0.58 0.56 0.667 0.707 0.714

P2-Protection 0.845 0.54 0.53 0.658 0.683 0.873
* The bold numbers represent for the best defense performance, while the underlined numbers indicate the

highest prediction accuracy among the defended models.

FedPass [21]. FedPass introduces an adaptive obfuscation
module integrated within the FL models. It dynamically ad-
justs the obfuscation during the training process to protect
sensitive features of the training data. Following the settings
of FedPass, for all datasets, we add an FC layer and a
normalization layer at the input of the corresponding model
architecture. The output dimension of the FC layer is kept
consistent with the dimension of the input data, ensuring that
the transformed data can still be processed by the models
outlined in Table I.

HAMP [22]. HAMP protects the membership privacy of
training data by pre-assigning high-entropy soft labels to the
training data and training the model with these modified labels,
thereby causing the model to exhibit less certainty in its

predictions on the training data. By doing so, it can enforce
the protected models to behave similarly on the training and
testing samples. In our experiment, we set the default value
of the entropy threshold parameter γ of HAMP to 0.5 for all
datasets.

B. Performance
We first test three attack methods against our defense on

the five datasets. We implement P2-Protection to all layers in
the target models. The results shown in Table II demonstrate
that P2-Protection could achieve the following three goals.

Effectiveness. An effective defense mechanism should al-
leviate the leakage risk of MIAs from FL models. We com-
pare our P2-Protection with three defense methods against
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three types of MIAs. The results are shown in Table II.
From the results we can see that P2-Protection and the six
comparisons have similar performance when defending S-
Attack and ML-Leaks. However P2-Protection outperforms
all six comparisons when confronting the last three more
powerful attacks. For instance, on Purchase20, P2-Protection
can decrease the attack accuracy of G-Attack from 0.648 to
0.531 (i.e., by 18.1%). In contrast, DP-SGD only decreases
the attack accuracy by 9.1%, about half as much as that of
P2-Protection. It seems counterfactual that DP-SGD works
even worse despite it operates in each aggregation while P2-
Protection only operates at the last aggregation. The reason is
that the additive Gaussian noise introduced to each local model
gradient may counteract each other. GD-Attack and TEAR
perform slightly better than G-Attack. However, P2-Protection
still manages to defend against them, achieving a reduction
in attack accuracy of over 0.8 across multiple datasets. For
Soteria, it is apparent that when confronted with G-Attack,
its performance is inferior to that of P2-Protection across all
datasets, as Soteria distorts the activation values of FL models
and modifies the corresponding gradient updates. However,
throughout the FL training process, the gradient related to the
perturbed activations of member data still tends to converge
toward a specific value and direction. This convergence poses
a risk of potential membership information leakage for the
gradient protected by Soteria. HAMP is the closest to P2-
Protection, with attack accuracy gap of 0.10 or less under
multiple attacks.

Nevertheless, from the experiment results we can find an
abnormal phenomenon: when confronted with TEAR, P2-
Protection exhibits a poor performance. This is because TEAR
works during the model training phase, based on the rela-
tionship between samples and the model’s decision boundary.
However, P2-Protection does not intervene in the training pro-
cess of the model. Therefore, P2-Protection has no significant
defensive effect against TEAR.

Fidelity. The fidelity property requires that a defense mech-
anism preserves the utility of the protected model, minimiz-
ing its impact on the prediction accuracy of FL models.
The third column of Table II shows the prediction accu-
racy of FL models before and after undergoing protection
with different defenses. The results reveal that P2-Protection
excels in maintaining the highest fidelity for the target FL
models. Specifically, our method induces a minimal accuracy
reduction of 0.01 for MNIST, 0.019 for Purchase20, 0.008
for FEMNIST, and 0.011 for CelebA. In contrast, DP-SGD
leads to a significantly larger accuracy decline for these
datasets, which is 10× greater than that observed with P2-
Protection. This phenomenon is also observed in the case
of Soteria. The main reason primarily stems from the utility
constraint, as outlined in Eq. (3), which we incorporate into
the prediction perturbation. FedPass and P2-Protection have
minimal impact on the model performance. However, Fed-
Pass exhibits significantly worse robustness against inference
attacks compared to P2-Protection. This indicates that P2-
Protection achieves a better trade-off between effectiveness
and fidelity. Many existing defenses neglect the perturbation
of FL model predictions concerning model performance. For

(a) Gradient (MNIST) (b) Gradient (Purchase20)

(c) Prediction (MNIST) (d) Prediction (Purchase20)

Fig. 2: The direction deviation of model gradient and predic-
tion involved by P2-Protection.

instance, DP-SGD randomly generates a perturbation noise
and then adds it to the gradient updates of FL models. In
contrast, our P2-Protection strategically selects a direction
that optimally preserves model performance while altering
the internal parameters of the model. In reality, a randomly
chosen direction may not be the most effective for privacy
preservation. The results provide insight that by controlling
the direction of the added perturbation, we can mitigate the
impact on model performance while achieving the same level
of protection.

Furthermore, in order to show what P2-Protection does
to the model, we compare the direction change of gradient
and prediction of the target model with and without P2-
Protection. Specifically, we use cosine similarity to measure
the direction change. A cosine similarity close to 1 means
that the change which P2-Protection brings to the protected
model is small. Fig. 2 presents the distribution of cosine
similarity about gradient and prediction for two datasets. From
the experiment results, we can find that for the direction
deviation of model gradient, training data distributes more
widely while test data has a huger direction deviation. Besides,
the prediction deviations of both training data and test data are
not remarkable. It seems abnormal that P2-Protection causes
more change to the gradient for test data than training data.
We attribute this to the intrinsic property of model training:
the model converges towards the direction which decreases
the loss function for training data. This offsets against the
mechanism of P2-Protection, since P2-Protection aims to
deviate the gradient direction w.r.t the training data.

Feasibility. A part of existing MIA defenses require full
knowledge of models (including training algorithm, model
type, and hyper-parameters) and protected data (including sta-
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(a) Attack Accuracy (b) Prediction Accuracy

Fig. 3: The impact of the number of classes.

tistical information and a part of data samples), which may not
be available in practice. As a practical defense, P2-Protection
is similar to DP-SGD which uses perturbation to alleviate the
leakage risk of membership information. One major difference
is that P2-Protection is a post-training defense while DP-
SGD operates during the FL training phase. In this sense,
P2-Protection could also protect the normal FL model by
adding an extra round of training. As shown in Table II, the
accuracy decline of DP-SGD is more than 10× than that of P2-
Protection. The balance of privacy and utility is a challenge
for the DP-SGD mechanism. To select a preferable privacy
budget, the whole FL training may be conducted many times.
On the contrary, P2-Protection achieves an improved trade-off
between the perturbation and the model performance with the
help of the prediction accuracy constraint.

C. Impact of Number of Classes

It can be seen in Table II that a complex dataset (i.e., the
dataset with high input or output dimensions) suffers from
more risk of information leakage. To study the impact of
the number of dataset classes on P2-Protection, we use K-
Means algorithm to split the original Purchase dataset into
2, 10, 20, 50 and 100 classes. Besides using P2-Protection,
we also set a baseline that does not introduce any defense.
Fig. 3 shows the attack accuracy and prediction accuracy as a
function of the number of classes for Purchase dataset. As can
be seen, with the increasing number of classes, the prediction
accuracy decreases gradually for both methods. In addition,
the attack accuracy of P2-Protection stays at around 0.57
while the attack accuracy of no defense has a rapid increase,
and is much higher than that of P2-Protection. This means
that P2-Protection is more sensitive to the prediction accuracy
rather than the attack accuracy. In general, a classification task
with more classes implies more internal information about
the dataset. This is largely because the number of neurons of
the last layer (which contains more membership information
compared with other layers) is proportional to the number
of classes. However, our P2-Protection can restrain the MIA
destructiveness resulting from the increasing classes.

D. Impact of Protected Layers

In order to evaluate the impact of the protected layers,
we apply P2-Protection to different layers and measure the

TABLE III: The impact of the number of protected layers on
the defense performance of P2-Protection.

Protected
Layers

Attack Acc. Predic. Degrad.

MNIST Purchase20 MNIST Purchase20

- 0.620 0.648 - -
Last Layer 0.560 0.586 0.001 0.016

Forth to last layer 0.558 0.570 0.003 0.018
Third to last layer 0.547 0.539 0.006 0.018

Second to last layer 0.542 0.538 0.005 0.018
First to last layer 0.540 0.531 0.010 0.019

defense performance against G-Attack. Note that no matter
which layer our defense is deployed to, G-Attack always uses
the gradient of the whole model parameters to perform MIA.
As shown in Table III, there is no significant difference on the
attack accuracy for different protected layers. One interesting
observation is that implementation in the latter layers brings
about a more accurate prediction performance while keeping a
similar defense effect. For MNIST, the prediction degradation
of protecting the last layer is 0.001, much smaller than that
of the first layer or the second layer. We conjecture that
latter layer reveals more information about the training data.
The result indicates that deploying P2-Protection on latter
layers can get a better trade-off of the prediction accuracy
and defense effect for the FL models.

We also investigate the impact of the number of protected
layers on the defense performance of P2-Protection. We first
deploy P2-Protection into the last layer of the target model and
then gradually increase the number of protected layers. We re-
port the attack accuracy for the models trained on both MNIST
and Purchase20 in Table III. From the experiment results we
can find that the more layers are protected, the stronger defense
capability the model has. However, the prediction performance
of the protected model is almost not affected by the number
of protected layers.

E. Impact of Overfitting Level

Previous studies have revealed the importance of model
overfitting level to a successful MIA [16]. Hence we assess
P2-Protection under different overfitting levels. To achieve
this, we set the total rounds of aggregation to 2, 4, 6, 8,
and 10 respectively, and then perform G-Attack to evaluate
the defense performance of our defense. Naturally, the more
training rounds, the more severe the overfitting level. As shown
in Fig. 4(a), with the increasing overfitting level, the gap of
attack accuracy between the FL model with and without P2-
Protection becomes larger. Even though the attack accuracy for
these datasets reaches the peak at the 10-th round, we can see
a large degradation of the attack accuracy, which demonstrates
that P2-Protection also works more efficiently in an overfitting
situation. In Fig. 4(b), we can observe that the dashed line
(without defense) and the solid line (P2-Protection) are so
close. Therefore, P2-Protection almost does not affect the
prediction functionality of the model in the training phase.

The main reason for the phenomenon in Fig. 4(a) is that
an overfitted model overly fits to its training data, leading to
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(a) Attack Accuracy (b) Prediction Accuracy

Fig. 4: The attack accuracy and prediction accuracy for FL
models with different overfitting levels.

substantial differences in gradients and predictions between
the training and testing data. Thus the gradients and predic-
tions would contain a wealth of membership signals, which
can facilitate the execution of MIAs. However, P2-Protection
disrupts this by introducing perturbations to the gradients and
predictions for each training sample, causing them to deviate
from their original values. This deviation reduces the member-
ship information carried by the gradients and predictions. The
more overfitted the model is, the more certain its gradients
and predictions are on the training samples; hence, a small
perturbation can greatly destroy the membership signals they
contain. Therefore, as the degree of model overfitting in-
creases, the more membership information is contained in the
gradients and predictions, our method becomes more effective
at removing this membership information, thus improving the
performance of defenses against MIAs.

F. Impact of Defense Intensity

In the design of P2-Protection, the defense intensity α
in Eq. (4) is determined by identifying an optimal value
that maximizes the gradient deviation while preserving the
prediction label of the protected FL model on the FL client’s
training data. The chosen intensity α significantly influences
the utility of the FL model and the privacy of the FL client. In
an ideal scenario, as α approaches 0, the poisoning degree of
the target model increases, thereby exerting a more substantial
impact on the prediction and gradient of the FL models. This,
in turn, results in diminished prediction accuracy but a reduced
risk of membership information leakage.

In order to better understand the defense intensity α, it
is necessary to discuss the impact of α on the defense
performance and the prediction performance of the protected
model. Specifically, we manually vary α from 0 to 1 with an
interval of 0.2 and evaluate the corresponding performance of
P2-Protection. The results against G-Attack on two datasets
are shown in Fig. 5. From the results we can see that larger α
would bring in better prediction utility but weaker defense
ability. However, we can find that the prediction accuracy
and attack accuracy vary with α in different ways. This
observation suggests that by comparing the gradient of two
lines, we can choose a certain value of α that satisfies a
slowly rising prediction accuracy before a rapid increase in
attack accuracy to get a better trade-off between prediction and

(a) MNIST (b) Purchase20

Fig. 5: The attack accuracy and prediction accuracy for FL
models vs. defense intensity. The gray dash line locates α∗

obtained by binary search. Bigger markers with black edge
represent the attack/prediction accuracy when α = α∗.

attack accuracy. By using binary search, we can also achieve
a preferable cost-effective privacy and utility tradeoff. Maybe
binary search is not the best method to decide α∗ with optimal
prediction-attack accuracy ratio, but it is an adaptive algorithm
and its computation cost is small.

G. Impact of Number of Attackers

In FL scenarios, some malicious clients may collude to
jointly infer whether a given target sample belongs to the
training data of the remaining benign clients. The more clients
that collude, the more training and testing data the attacker has
access to, which aids in conducting more powerful MIAs. So
in this section, we vary the number of colluding FL clients,
ranging from 1 to 9, to assess the impact of FL client attackers
on the performance of our defense mechanism. Here, we
evaluate the effectiveness of our defense method against G-
Attack on the MNIST and Purchase20 datasets, and the results
are shown in Table IV.

From our results we can see that the performance of
P2-Protection gradually declines on both the MNIST and
Purchase20 datasets as the number of colluding FL clients
increases. Specifically, for MNIST dataset, our defense per-
formance significantly decreases as the number of colluding
FL clients increases from 1 to 6. However, when the number of
colluding clients continues to grow, the trend of performance
decline becomes less pronounced. Purchase20 dataset exhibits
a similar phenomenon, but it is noteworthy that the decline in
defense performance only begins to stabilize when the number
of malicious clients exceeds 7. The main reason for this phe-
nomenon is that as the number of colluding attackers increases,
the amount of data they can use to train the attack model also
increases. This increase means that attackers can obtain more
information about the relationship between protected gradients
and membership properties, which significantly enhances the
performance of the inference attack model, leading to a decline
in our defense performance. When the data volume reaches
a certain level, the data from newly added malicious clients
mostly overlaps with existing data, thus the impact on our
defense performance gradually decreases.
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TABLE IV: The impact of the number of attackers on the
defense performance of P2-Protection under the G-Attack.

Number of
Malicious Clients

Number of
Benign Clients

Attack Acc.

MNIST Purchase20

1 9 0.540 0.531
2 8 0.557 0.553
3 7 0.561 0.576
4 6 0.571 0.591
5 5 0.576 0.614
6 4 0.592 0.619
7 3 0.598 0.625
8 2 0.601 0.627
9 1 0.604 0.635

VI. RELATED WORK

A. Membership Inference Attacks

Centralized Learning. Shokri et al. [25] conduct the first MIA
called Shadow Attack targeting centralized ML models. They
build a shadow model to imitate the behavior of the target
model and use its prediction of member and non-member
data as the input features of the attack model. However, it
needs a public dataset with the same distribution as the private
dataset on which the model is trained. As a follow-up, Salem et
al. [18] relax the assumption in Shadow Attack, and study the
independence of dataset and shadow model in MIAs. Yeom
et al. [33] explore the relationship between overfitting and
privacy leakage and find out that overfitting is not a necessary
factor for MIAs.

Except for prediction, other forms of model parameters
like gradients, loss value, loss trajectory, and prediction label
are also shown to be relevant to membership information.
For instance, Nasr et al. [29] compare different forms of
leakage and find that the gradients of latter layers are more
susceptible to privacy attacks, since high dimensional gradients
leak more membership information than lower dimensional
model outputs [34]. Concerning the black-box models, Liu et
al. [35] use a local linear model to approximate the gradients
of the target model and then perform MIAs. More recent works
study on the relationship between model prediction boundary
and membership property, and propose boundary-based attacks
[36]–[38]. These boundary-based attacks are more realistic
because they only use prediction labels to verify membership
information. Liu et al. [39] exploit the loss trajectory of
the target sample from the whole training process concern-
ing the target model, and mine the membership information
hidden behind the trajectory to differentiate members from
non-members. Ko et al. [40] then leverage the embedding
similarities between the image and text features, and analyze
the membership privacy of training data in large-scale multi-
modal models.
Federated Learning. Melis et al. [41] implement MIAs in
FL setting and find that some unintended information as
well as membership can be revealed from the model updates.
An active attacker can thus achieve a more powerful attack
by uploading elaborated updates. Nasr et al. [29] investigate
the vulnerability of stochastic gradient descent algorithm and
deign a general MIA. They explain that the gradient of loss on

a data record reflects the membership property, which inspires
us to use gradient ascend to protect the privacy. Zari et al. [42]
propose a computation and time saving passive MIA and de-
sign an attack model architecture that captures the FL training
dynamics. Considering the difficulty to acquire a training set
with the same distribution as the target model, Zhang et al. [43]
use generative adversarial networks to generate the training
data of the target client, making the attack possible under
the iid condition. Recently, Li et al. [30] discover that for a
trained FL model, the gradients of different training samples
tend to be almost orthogonal. They then leverage this property
by comparing the gradient of a sample with the gradients of
the global model to conduct MIAs.

What is more, during the FL training process, both the
prediction score and the adversarial robustness series of a
target sample with respect to the target models can also breach
the membership privacy of the FL client, so Gu et al. [44] and
Liu et al. [12] respectively construct an inference model to
extract membership features from the series of confidence and
robustness on both training and testing data to execute MIAs.
Pichler and colleagues [13] introduce an FL server-side MIA.
They create unique model parameters for a target sample and
utilize clients’ updates to discern the membership status of this
sample.

B. Defenses Against MIAs

Centralized Learning. One basic idea for the defense against
MIAs is to enhance the generalization of the target model.
Shokri et al. [25] propose to add an L2 regularization term
during the calculation of loss function. Dropout [45] is first
proposed to reducing overfitting in ML model but is soon
proven to be a defense for privacy leakage [46].

One more effective way of enhancing privacy is DP [47]
which provides theoretical privacy guarantee with additional
random noise. Abadi et al. [19] provide a simple way called
DP-SGD in centralized scenario, to implement DP during
model training phase. But it is found to introduce conver-
gence problem and accuracy loss. To lower such side ef-
fects, Rahimian et al. [48] point out that DP-SGD not only
decelerates the training speed, but also leads to a unstable
privacy budget with respect to the model complexity. Instead
of processing gradients during the training phase, they choose
to add noise to the prediction. Though it does not affect the
training process of the target model, it limits the application
of white-box models and cannot resist label-only attacks.
In addition to directly adding noise to model predictions,
Chen et al. [22] introduce HAMP, a defense mechanism that
employs high-entropy soft labels during training and modifies
prediction outputs at testing time. By enforcing less confident
predictions across both training and testing samples, HAMP
mitigates the risk of membership privacy leakage without
compromising model accuracy.
Federated Learning. Since the privacy information about the
training batch can be inferred from the uploading parameters,
many defenses focus on adding perturbation on the uploading
parameters [49]. For example, Shokri et al. [50] apply DP
in FL setting, where each participant adds carefully selected
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Laplacian noise to the original updates before sending it to the
server. Unfortunately, except for notable accuracy decay, their
privacy budget is given per-parameter, resulting in overwhelm-
ing calculation for complex neural network models that contain
a mass of parameters. Yang et al. [51] design a perturbation
method that causes little impact on model utility. However,
it only defeats inference attacks launched by clients and the
server could recover the training data from the aggregated
gradients. To protect the client-level privacy during the FL
training, Geyer et al. [31] try to conceal the contribution of
clients with a minor cost of model utility, but also requiring
an honest server, which means the server cannot tamper with
the aggregation results.

Except for perturbation-based defenses, some novel privacy-
preserving frameworks are proposed. Zhao et al. [52] present
PrivateDL, which allows clients to transfer knowledge from
sensitive training data with public dataset. Similarly, Fan et
al. [53] propose secret polarization network which imposes
perturbations on uploading parameters while maintaining the
original performance. However, inducing a new collaborative
training process is not an easy way and may involve other
vulnerabilities. In [54], the client trains an encryption network
privately to modify the raw training data which results in
distorting updates. Boutet et al. [55] rectify normal FL training
progress by adding a trustworthy third party, but it is not that
practical and also computationally intensive. Gu et al. [21]
introduce FedPass, a method that incorporates an adaptive
obfuscation layer prior to the input of data features into the
FL model, effectively concealing the original features and thus
safeguarding the sensitivity of the training data.

Among those defenses, perturbation-based methods may
hurt utility since random perturbation affects the convergence
of optimization; other privacy-preserving frameworks need
to modify the original FL training process or even induce
new risks. Compared with existing defenses, our method is
a post-training defense mechanism, which means it can be
implemented (as a patch) after the completion of FL training
and does not modify the original FL process. Additionally, al-
though our method is perturbation-based, it differs from other
perturbation-based methods, such as DP-SGD, in that it does
not directly add noise to the values of gradients or predictions;
instead, it perturbs the gradients in terms of the direction
perspective and also considers restrictions on the accuracy
decay of the FL model. Lastly, our method perturbs both the
FL model’s predictions and gradients simultaneously, which is
an advantage over some existing methods that typically target
either predictions or gradients.

VII. CONCLUSION

In this paper, we have presented P2-Protection, an MIA
defense which can be executed after the training process
of an FL model, by poisoning the prediction and gradient
of the given model’s training data. Compared with existing
defenses, P2-Protection requires neither the modification of
FL training process nor the access to the target FL model’s
internal parameters and training data. By introducing an extra
round of training with the poisoned gradient, P2-Protection

can defend against MIAs with respect to the prediction and
gradient simultaneously. We compare P2-Protection with two
typical defenses against three MIAs on five realistic datasets,
and the experiment results demonstrate that our defense can
achieve an improved trade-off between model utility and data
privacy. We envision our work as a solid step in FL towards
defending privacy leakage of client data and provides an
alternative approach on defense mechanisms against MIAs.
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