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Abstract— Recommender systems (RS) have become an
essential component of web services due to their excellent
performance. Despite their great success, RS have proved to
be vulnerable to data poisoning attacks, which inject well-
crafted fake profiles into RS, so that the target items can be
maliciously recommended. In this paper, we first reveal that
existing poisoning attacks in RS can be detected effortlessly, as the
features of the generated fake profiles cannot be inconsistent with
those of normal profiles all the time. We further propose RecUP,
a poisoning attack in RS that can generate plausible profiles
whose features stay almost the same as the normal ones, based
on Generative Adversarial Networks (GAN). To tailor GAN for
poisoning in RS, we develop HRGAN and devise a loss function
to guide the training of the generator, along with a masking
operation with selected potentially powerful profiles, so that the
final generated profiles can perform malicious recommendations
as expected. Evaluations against various defense methods using
three real-world datasets show that, RecUP can generate the
most plausible profiles while maintaining comparable attacking
performance compared with state-of-the-art attacks.

Index Terms— Recommender systems, shilling attack, genera-
tive adversarial network.

I. INTRODUCTION

RECOMMENDER systems (RS) aim to find the data that
matches a user’s preference, given the user’s historical

user-item interaction behavior (e.g., ratings or clicks, referred
to as user profiles, or profiles for short) and other useful
information [1], [2]. RS help people find their interested items
by analysing profiles, which brings huge economic benefits.

Manuscript received March 24, 2021; revised August 9, 2021; accepted Sep-
tember 13, 2021. Date of publication October 1, 2021; date of current version
October 19, 2021. This work was supported in part by the National Natural
Science Foundation of China under Grant 61872416, Grant U20A20181, Grant
52031009, Grant 62002104, Grant 62071192, and Grant 62171189; in part
by the Fundamental Research Funds for the Central Universities of China
under Grant 2019kfyXJJS017; and in part by the Special Fund for Wuhan
Yellow Crane Talents (Excellent Young Scholar). The work of Ling Liu was
supported in part by the National Science Foundation CISE Grant 2038029,
Grant 2026945, and Grant 1564097; in part by IBM Faculty Award; and in
part by Cisco Grant on Edge Computing. The associate editor coordinating
the review of this manuscript and approving it for publication was Dr. Issa
Traore. (Corresponding author: Chen Wang.)

Xuxin Zhang, Jian Chen, and Chen Wang are with Hubei Key Lab-
oratory of Smart Internet Technology, School of Electronic Information
and Communications, Huazhong University of Science and Technology,
Wuhan 430074, China (e-mail: xuxinz@hust.edu.cn; jianchen@hust.edu.cn;
chenwang@hust.edu.cn).

Rui Zhang is with Hubei Key Laboratory of Transportation Internet of
Things, School of Computer Science and Technology, Wuhan University of
Technology, Wuhan 430070, China (e-mail: zhangrui@whut.edu.cn).

Ling Liu is with the College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332 USA (e-mail: ling.liu@cc.gatech.edu).

Digital Object Identifier 10.1109/TIFS.2021.3117078

As a result, RS have become the key component of many web
services such as Amazon [3], Facebook [4], Google [5].

Meanwhile, various studies [6]–[12] have pointed out
that RS are vulnerable to the so-called data poison-
ing attacks (a.k.a. shilling attacks [13]), which inject
well-crafted fake profiles into RS, so that the tar-
get items can be recommended to more/less users for
shopping/competition [14]–[17]. To avoid being detected eas-
ily by existing defenders in RS [18]–[20], recent studies try
to launch poisoning attacks with special considerations, such
as designing attacks with stealth in mind [8], [9], or making
other recommendations of the system less perturbed [14].

In this paper, we argue that existing poisoning attacks in
RS can still be detected effortlessly, since most if not all
the attacks generate fake profiles relying on some global
statistics, e.g., average rating value and rating variance for
each item [13], [21], [22]. Using a simple detector based on
seven representative features commonly used by the existing
detection techniques in RS, we examine the feature difference
between normal profiles and the fake ones generated by dif-
ferent attacks. The results show that the significant difference
exists in more than one features for all the attacks (c.f. Table I),
indicating an over-estimation of existing attackers’ ability to
disguise fake profiles.

Against this background, we move one step forward and
propose RecUP, a poisoning attack in RS that can generate
plausible profiles whose features stay almost the same as the
normal profiles. RecUP leverages the generative adversarial
networks (GAN) to capture the complex user-item correlation,
considering that the well-trained generator of GAN is able to
generate synthetic data with features indistinguishable from
those of the ground-truth. To tailor GAN for poisoning in RS,
we develop HRGAN and devise a loss function to guide the
training of the generator, so that the generated profiles can
perform malicious recommendations as expected. In addition,
inspired by the fact that top-N recommendations may be more
affected by some influential profiles, we further select the most
positive influential profiles as additional input to the generator
to further enhance the attack effect. It should be emphasized
that RecUP requires neither the learning algorithms nor para-
meters of the target RS but only the user-item rating matrix,
which does not exceed what existing attacks require to know.

In summary, our major contributions are as follows.
• We devise a simple yet effective detection classifiers

incorporating seven typical features commonly adopted
by existing detection techniques in RS, and reveal that
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existing poisoning attacks in RS are easy to be detected
as the features of their generated fake profiles cannot be
inconsistent with those of normal profiles all the time.

• We design a novel GAN-based framework that considers
both the purpose of data poisoning attacks and simulating
the features of normal profiles, central to which is the
novel design of a loss function, along with a masking
operation with selected potentially powerful profiles to
enhance the attack effect.

• We conduct a thorough evaluation on RecUP against
various defense methods using three real-world datasets.
The results show that RecUP can generate the most
plausible profiles while maintaining comparable attacking
performance compared with state-of-the-art attacks. It is
also noticed that RecUP is still effective when only partial
rating profiles are available, and can perform even better
given extra knowledge of user-specific attributes.

The remainder of this paper is as follows. Section II reviews
some related work on poisoning attack/detection methods.
Section III presents our motivation, as well as the threat model,
followed by the detailed design of RecUP in Section IV.
Section V evaluates the performance of RecUP, and finally,
Section VI concludes our work. The code of RecUP has been
released for reproducibility purposes.1

II. RELATED WORK

In this section, we review some poisoning attacks and
detection methods in RS that are directly related to our work.
More related work can be referred to some recent surveys such
as [2], [23]–[25].

A. Poisoning Attacks in RS

Data poisoning attacks have been recognized in RS for
many years [7], [9], [13], [26], [27]. Earlier works focus on
creating hand-crafted fake profiles and do not achieve satis-
factory attack performance, e.g., the random attack (Random)
[13], the average attack (Average) [13], and the bandwagon
attack (Bandwagon) [28]. Since 2016, there are several stud-
ies designed poisoning attacks for specific types of RS,
e.g., association-rule-based RS [15], graph-based RS [16], and
matrix-factorization-based RS [8]. For instance, Li et al., [14]
propose a poisoning attack to make the root-mean-squared-
error larger than its original value in RS. They confirm that tar-
get attacks (dubbed as PGA attack and SGLD attack) are more
effective in manipulating ratings of specific items. In recent
work [8], Fang et al. use a subset of influential profiles to
optimize the malicious ratings instead of using all normal pro-
files. Based on the given subset S of influential profiles, they
develop a series of gradient-based optimization algorithms
(including S-TNA-Inf and U-TNA) to determine the malicious
rating scores. Lin et al. [9] present a novel augmented shilling
attack framework (AUSH), one more specially tailored for
RS instead of directly using adversarial attacks against the
learning model. In recent work [7], Christakopoulou et al. use
the GAN-based algorithm to satisfy the unnoticeability goal

1https://www.dropbox.com/s/ssmfyhwtha28a8h/RecUP-code.zip?dl=0

and take the learning algorithm for the adversary’s strategy to
achieve the intended attack against the oblivious recommender.
However, these attacks are at the risk of being detected due
to significant difference in features between their fake profiles
and normal ones.

B. Poisoning Detection in RS

Usually, poisoning attack detection is considered as a binary
classification task, where the classification result of each
profile can be normal or abnormal [29]. Thus, most detection
methods are performed using machine learning techniques
to distinguish abnormal profiles among all profiles based on
detection features. These methods can be roughly categorized
into supervised classification [30], [31], unsupervised clus-
tering [20], [32], semi-supervised techniques [18] and other
techniques [33].

In particular, Cao et al., [18] propose a semi-supervised
learning based shilling attack detection algorithm (SemiSAD).
It first trains a naive Bayes classifier on a small set of labeled
profiles and then incorporates unlabeled profiles with EM-λ
to improve the initial naive Bayes classifier. In [34], the
naive Bayes algorithm is exploited as a basic model and the
final detector called PopSAD is trained on both collected
normal and fake profiles. Aktukmak et al., [20] propose a
probabilistic factorization model to embed the available ratings
and mixe user attributes into the latent space to generate
anomaly statistics for new profiles. They identify the persistent
outliers by unsupervised sequential attack detection algorithm.
Cai et al., [35] propose a novel unsupervised detection model
based on analysis of user rating behavior.

Considering that supervised detection methods can achieve
higher accuracy in detecting various poisoning attacks with the
prior knowledge of the attacks, we evaluate our attack based
on supervised detection methods.

III. PROBLEM FORMULATION

In this section, we introduce seven representative features
that were commonly used in poisoning detection in RS, and
show that existing poisoning attacks can be simply detected
using these features. On this basis, we present the threat model
of our RecUP, with the basic idea how RecUP strengthens the
attack effect.

A. Detection Features

The key features used by the existing detection methods can
be classified into two classes: generic attributes and model-
specific attributes [23], [36], [37]. In our work, we only select
seven typical features for investigation. More features can be
adopted upon particular requirements.

1) Generic Attributes: Generic attributes are based on the
general abnormal behavior of the user, and can be used for
almost all attack types.

(1) Rating Deviation from Mean Agreement (RDMA):
the average deviation of profiles per item, weighted by the
reciprocal of the rating number of the item:

RDM Au =
∑nu

i=0
|r i

u − r i |
nri

nu
(1)
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Fig. 1. The box-plot of different profiles regarding to two instanced features, WDMA and FMV, in ML-100K dataset. Outliers are plotted as individual
points in the box-plot.

where nu is the number of items user u has rated, r i
u is the

rating given by user u to item i , r i is the average of ratings
assigned to item i , and nri is the overall number of ratings in
the system given to item i .

(2) Weighted Deviation from Mean Agreement (WDMA):
a weighted version of RDMA for sparse items:

W DM Au =

∑nu
i=0
|r i

u − r i |
n2

ri

nu
(2)

(3) Length Variance (LengthVar): a measure of how much
the length of a given profile varies from the average length
among all profiles:

LengthV aru = nu − nu∑
u∈U (nu − nu)2 (3)

where nu is the length of user u (i.e., the number of items that
user u has rated), and nu is the average length of all profiles
in the system.

(4) Degree of Similarity with Top Neighbors (DegSim):
the average similarity weighted with the top-k neighbors of
user u [23]:

DegSimu =
∑k

v=1 simu,v

k
(4)

where k is the number of neighbors, and simu,v is the
similarity between profiles u and v, that can be calculated
via Pearson’s correlation as in [18]:

simu,v =
∑

i∈I (r
i
u − ru)(r i

v − rv )√∑
i∈I (r

i
u − ru)2

∑
i∈I (r

i
v − rv )2

(5)

where ru is the average of all ratings that given by user u.
2) Model Specific Attributes: Model specific attributes are

used for specific types of attacks, e.g., some attributes for
the average attack, while some for the random attack. They
normally involve the filler items which are filled with fake
ratings, except for the target item, to obstruct detection of the
attack.

(1) Filler Mean Variance (FMV): for the average attack and
is defined as:

F MVu =
∑
i∈l f

(r i
u − r i )2

|l f | (6)

where l f is the filler item set that all items scored by user u
except the target items. This attribute aims to capture abnormal
variances between the individual mean of each item and the
ratings of the filler items of the profile.

(2) Filler Mean Difference (FMD): for the average attack
and is defined as:

F M Du =
∑nu

i=0 |r i
u − r i |

nu
(7)

This attribute computes the average value of the absolute
value of the difference between the user’s rating score and the
average rating score for the hypothesized filler items (unlike
FMV, which uses the squared value).

(3) Filler Average Correlation (FAC): for the random attack
and is defined as:

F ACu =
∑nu

i=0 |r i
u − r i |√∑nu

i=0 |r i
u − r i |2

(8)

This attribute calculates the correlation between the filler
ratings in the profile and the average rating for each item.

B. Motivation

We employ the aforementioned seven features to examine
whether existing attacks are easy to be detected. Specifically,
we take all the profiles in MovieLens-100K (ML-100K)
dataset [38] as normal profiles, and generate fake profiles
based on different attack methods with 5% attack size. After
that, we calculate the values of each feature of normal pro-
files and fake profiles for each attack. In this way, we can
observe the distinct distribution difference in features between
normal and fake profiles. For example, c.f. Fig. 1 shows the
distribution of two features, W DM A and F MV for different
profiles, and we can see that compared with normal profiles,
fake profiles have evident differences, significant for some
attacks while less significant for others.

On this basis, we further train a series of binary
classifiers based on different detection methods (includ-
ing SemiSAD [18], PopSAD [34], and others described in
Section V-A.2), and test the difference in each feature between
normal profiles and fake ones generated by each attack. For
example, we calculate the values of W DM A of normal pro-
files and fake ones generated by the random attack, and then
we split the results, 70% for training and the rest for testing.
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TABLE I

FEATURE DIFFERENCE BETWEEN NORMAL PROFILES AND GENERATED FAKE PROFILES IN ML-100K DATASET

Next, we train a binary classifier via SemiSAD with the above
training set, and assess the classifier on the testing set. When
the output is positive, we believe that there is a significant
difference in the feature W DM A between normal profiles
and fake ones generated by the random attack, otherwise it
is not. By changing the features and attack methods, we can
distinguish the generated fake profiles and the normal ones
(see the results in c.f. Table I). Note that we use different
detection methods to train the binary classifier, and the final
results are determined by the majority rule.

As can be observed in c.f. Table I, the fake profiles
generated by different attacks can be resemblant with normal
profiles in some features, while not in others. Therefore, there
is still much room for the improvement of the plausibility of
the fake profiles, and right now these attacks can be easily
detected when different features are considered by our simple
detection classifiers. This motivates us to develop RecUP that
can generate plausible profiles in all features, as indicated in
c.f. Table I, to enhance the degree of camouflage.

C. Threat Model

In this section, we provide a detailed threat model for our
RecUP. The threat model consists of identifying the attacker’s
goal, attacker’s knowledge of the RS, attacker’s capability
of manipulating the training data, and eventually lead to the
attack strategy.

1) Attacker’s Goal: There are generally two types of poi-
soning attacks in RS [24]: the push attack (resp. the nuke
attack), which aims to promote (resp. demote) the target item
i tg to as many normal profiles as possible. Considering that
these two types of attacks can be essentially converted to each
other, we thus focus on push attacks in this paper, as generally
done in recent works [7]–[12]. Meanwhile, we also try to avoid
the detection as much as possible, so that the attack effect can
takes a longer time. Note that the nuke attack version of RecUP
can be implemented in a similar way as done in this work.

2) Attacker’s Knowledge: We consider the target RS based
on mere the rating matrix, e.g., the neighborhood-based
RS [39], the matrix-factorization-based RS [40], and the deep
learning based RS [41], [42]. In some studies, the attacker is
assumed to have full knowledge of the target RS, including all
the rating data (i.e., the rating matrix consisting of m profiles
and n items), and both the learning algorithms and parameters
of the learner [14]. However, in practice, the recommendation

model is often deployed as a black box, and it is only possible
to obtain the profiles’ ratings, e.g., through directly browsing
profiles’ ratings when shopping on Amazon.

Therefore, in our work, we consider a more practical
scenario, where the attacker has the knowledge of all users’
ratings, but knows nothing about the learning algorithms and
parameters. In fact, our work does not depend on the type
of the targeted RS deployed by the service provider and only
needs the rating matrix, which exists in most RS, e.g., the
neighborhood-based RS [39], the matrix-factorization-based
RS [40], and the deep learning based RS [41], [42]. At times,
some individuals may generate anonymous ratings for the sake
of privacy, or some more user-specific attributes such as one’s
gender and age are provided. In these cases, we will show in
the experiments that RecUP is still effective even when only
a part of ratings can be access to (c.f. Section V-E.1), and
becomes more powerful when extra attributes are available
(c.f. Section V-E.2).

3) Attacker’s Capability: Given the rating matrix of the RS,
the attacker is capable to inject α × m ∈ N fake profiles into
the training data matrix, each fake profile with at most β items
regarding the rating score in the same range as that of a normal
profile. Here, α is the attack size (a.k.a. the poisoning rate)
that signifies the fraction of the training data controlled by the
attacker, and β is the profile size that indicates the number
of non-zero ratings (in other works [9], [25], β is also called
the filler size, and is referred to as the number of items that
one fake user could rate at most). The attacker’s ability in
our work is reasonable, since in many realistic scenarios, the
attacker can take control of only a small fraction of profiles in
the RS. For example, an attacker could register and falsify a
number of profiles by leveraging compromised machines [16].

4) Attacker’s Strategy: To achieve the goal, the attacker
seeks for an optimal rating score vector for each fake profile
to maximize the Hit Ratio of the target item i tg , which can
be formulated as:

max Hit Ratiotg =
∑

u∈U/tg
H tg

u

�U/tg� (9)

where H tg
u is the hit-function defined as:

H tg
u =

{
1 if i tg ∈ Iu ,

0 otherwise,
(10)
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Fig. 2. The framework of RecUP.

and Iu denotes the set of top-N items that the RS recommend
to the user u. U/tg denotes the set of profiles that exclude the
target item i tg , and � · � denotes the cardinality of the set.

It is pointed out that the above hit ratio maximization prob-
lem is NP-hard in general [8], [16], so it is quite challenging
to find an optimal solution, let alone taking into account the
variety of detection features discussed in Section III-A to
escape the detection to the greatest extent. What makes it
even harder is that the recommendation model is treated as
a black box: neither the learning algorithm nor the parameters
of the model are not fully informed. Therefore, we propose to
generate plausible profiles with the idea of GAN.

IV. RECUP DESIGN

Given the user-item rating matrix, RecUP aims to generate
plausible profiles that can maximize the hit ratio of the target
item at the greatest extent. To this end, RecUP mainly involves
the following two steps (c.f. Fig. 2):

(1) Constructing Generator with HRGAN. RecUP develops
a variant GAN dubbed HRGAN for poisoning RS, with a loss
function to enhance the purpose of data poisoning attacks.
The generator of HRGAN acts as the “attacker” to generate
plausible profiles and the discriminator of HRGAN acts as the
“defender” to recognize the fake profiles whose features are
different from normal profiles.

(2) Generating Plausible Profiles. The well-trained genera-
tor with the masking operation can generate plausible profiles
whose features are consistent with those of ground-truth, and
potentially powerful profiles are selected as template profiles
for masking to further enhance the attack effect.

A. Constructing Generator With HRGAN

1) GAN-Based RS: The original GAN [43] contains two
neural networks: a generative model (shortly, G) and a dis-
criminative model (shortly, D). GAN performs adversarial
learning between G and D. In particular, G learns to capture
the distribution of the real data Pdata(x) from a prior noise
distribution z, while D learns to distinguish the real data

Fig. 3. A comparison of network architectures in GAN [43], CFGAN [46]
and our HRGAN.

samples x from G(z). Formally, G and D are playing the
following min-max two-player game simultaneously:
min

G
max

D
V (G, D) = Ex∼Pdata (x)[log D(x)]

+Ez∼Pz(z)[log(1− D(G(z)))] (11)

In the field of RS, IRGAN [44] and GraphGAN [45] are
the earliest GAN-based recommendation methods. Their main
idea is to let G generate discrete items a given user might
purchase, and to let D discriminate a user’s ground truth items
from those generated by G. However, there are considerable
limitations of the discrete item index generation approach in
those GAN-based methods (see detailed explanation in [46]).
CFGAN [46] takes better results by adopting real-valued
vector-wise adversarial training, where after training, G gen-
erates a dense vector containing predicted rating scores for
all items. Still, it is not normal for a user to have rated
all items. Thus, CFGAN maskes G’s output by multiplying
with an n-dimensional purchase vector of the user (called the
template), in order to meet the sparsity in ground-truth data
that G tries to mimic.

2) HRGAN Design: Following CFGAN, we design
HRGAN (Hit-Ratio-GAN) adopting some techniques such as
real-valued vector-wise adversarial training as well as masking
with the template to meet the peculiarity of the real RS

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 21,2021 at 00:41:00 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: ATTACKING RS WITH PLAUSIBLE PROFILE 4793

scenario. The difference is that we enhance the attack power
by adding a well-designed loss function to guide the training
of the generator (c.f. Fig. 3), so that the generated profiles are
able to recommend the target item to as many normal profiles
as possible.

In the design of HRGAN, the objective function of D,
denoted as J D , is as follows:

J D = −Ex∼Pdata [log D(x)] − Ex̂∼Pφ
[log(1− D(x̂)))]

= −
∑

u

log D(ru)−
∑

u

log(1− D(r̂u � eu))

= −
∑

u

(log D(ru)+ log(1− D(r̂u � eu))) (12)

and the objective function of G is:
J G =

∑
u

log(1− D(r̂u � eu)) (13)

where eu is an n-dimensional indicator vector specifying
whether u has rated the item i (ei

u = 1) or not (ei
u = 0),

and � stands for element-wise multiplication.
We define both of the objective functions to be a mini-

mization problem, and the main difference from the original
GAN is that we mask G’s output r̂u by multiplying it with eu ,
to simulate the sparsity of the real data that G tries to mimic.
Here, random selection is employed in the template profile for-
mation, as it is beneficial for learning more comprehensively
about the distribution of real user ratings. This difference is
consistent with CFGAN’s framework [46], and only G’s output
on the rated items can contribute to the learning of G and D.

As such, in HRGAN the input of G is the random noise
vector z, and the output is r̂u , an n-dimensional vector that
represents a possible rating vector of the user u rated to all
items. Then, the input of D is whether r̂u � eu from G or ru

from real data, and its output is a single scalar value in the
range of [0, 1], which represents the probability that its input
comes from the real data rather than G.

In addition, we expect the predicted rating scores r̂ tg
u that

user u gives to the target item i tg to go as large as possible, and
the higher rank of i tg in Iu , the better it would be. We notice
that the concise sigmoid function satisfies our demands: a
higher rank of i tg in Iu would lead to a smaller loss. Since
the range of J G is only between 0 and 1, and the sigmoid
function is differentiable, we thus use the sigmoid function to
approximate this purpose as follows:

L H =
∑
u∈U

∑
i∈Iu

g(r̂ i
u − r̂ tg

u ) (14)

where g(x) = 1
1+exp(−x) is the sigmoid function. For each

item i ∈ Iu , if r̂ i
u < r̂ tg

u , then the loss is smaller, and the rank
of itg in Iu is higher. We thus add L H into J G as:

J G = (1− λ) ·
∑

u

log(1− D(r̂u � eu))+ λ · L H (15)

where 0 < λ < 1 is a coefficient that trades off the impact of
different parts of the attack objective function.

We implement both G and D as multi-layer neural net-
works, the number of layer are LG >= 2 and L D >= 2,

Algorithm 1 Training Procedure of HRGAN

Input: User-item rating matrix R ∈ R
m×n , learning rate for G and

D: μG and μD , minibatch size for G and D: MG and MD ,
training step for G and D: stepG and stepD , parameters c, λ.

Output: G’s parameters θ .
1: Initial φ and θ ;
2: for c do
3: for stepG do
4: Noise sampling {z1, z2, . . . , zMG } from noise prior;
5: Sample minibatch of MG profiles from normal profiles as

template profiles eu ;
6: Calculate J G by Equation (15);
7: Update G by θ ← θ − μG

MG
· ∇θ JG ;

8: end for
9: for stepD do

10: Noise sampling {z1, z2, . . . , zMD } from noise prior;
11: Sample minibatch of MD profiles from normal profiles as

template profiles eu ;
12: Calculate J D by Equation (12);
13: Update D by φ ← φ − μD

MD
· ∇φ JD;

14: end for
15: end for
16: return θ

Algorithm 2 Selecting Potentially Powerful Profiles

Input: User-item rating matrix R ∈ R
m×n , attack size α

Output: Potentially powerful profiles P.
1: Initial P = ∅;
2: for i = 1; i < m; i ++ do
3: Take � clone profiles of user ui as Su ;
4: Calculate the attack power of u by Equation (16);
5: end for
6: P ← top-� profiles regarding to the attack power;
7: return P

parameterized by φ and θ , respectively. We train our G and
D networks by using the stochastic gradient descent (SGD)
with minibatch and back-propagation, and alternately update
the parameters of each network, φ and θ , keeping one fixed
when the other being updated (c.f. Algorithm 1). After the
adversarial training is completed, we can obtained the final
generator (G).

B. Generating Plausible Profiles

Given the well-trained generator (G), along with the mask-
ing operation, we can generate 	α × m
 plausible fake pro-
files based on the sampled noise and template profiles eu

that are sampled from normal profiles (see the right part in
Fig. 2).

The template profiles eu can be identified in a naive
manner by randomly selected from all the real profiles to
generate plausible profiles. This move ensures the sparsity
of real profiles in the RS, but neglects the fact that the
top-N recommendations results may be more influenced by
some influential profiles [47], [48]. Therefore, instead of using
random selection to build the template profiles, we attempt to
select those profiles that have more attack power to enhance
the effectiveness of our attack.
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Considering our goal is to find an optimal rating score vector
for fake profiles to maximize the Hit Ratio, we can evaluate
the attack power of the user u by injecting the clone profile
set Su that contains a certain number of clone profiles of u
into the RS and calculate the corresponding Hit Ratio:

A(u, tg) = Hit Ratiotg

s.t . �Su� = � (16)

where � is the set size (i.e., the number of clone profiles of
user u in Su) and Hit Ratiot is calculated by Equation (9).
Normally, a small � may not be powerful enough to push the
rank of the target item into top-N item list, while a large �
may bring about extra overhead. In this sense, we set � based
on the attack size:

� = 	α ×m
 (17)

where 	∗
 means fractions are rounded down.
By injecting the subset Su that include � clone profiles of

u into the RS, we calculate the Hit Ratio and take the result
as the attack power of u’s profile (c.f. Algorithm 2). After
calculating the attack power of all profiles, we take the top-�
profiles as the template profiles.

V. PERFORMANCE EVALUATION

A. Experiment Setup

1) Datasets: We evaluate RecUP typically on three RS
datasets, namely ML-100K [38], FilmTrust (FL) [49] and
CiaoDVD [49] (c.f. Table II). In ML-100K and CiaoDVD
datasets, the rating scores of profiles are given on the scale
{1, 2, 3, 4, 5} with 1 the lowest and 5 the highest. The rating
scores of FilmTrust are on the scale of 0.5 ∼ 4 with a step
0.5, and we scale up these ratings into 1 ∼ 5 for convenience.
Incidentally in CiaoDVD dataset, some repetitive ratings are
graded by the same user to the same item at different time.
To capture the user’s most recent interests, we merge these
ratings to the latest timestamp.

To evaluate RecUP in scenarios where the attacker has
knowledge of user-specific attributes (such as gender and
age, etc.), we adopt ML-100K [38] and Restaurant & Con-
sumer (R&C) [50] datasets. In particular, ML-100K involves 4
private attributes, namely gender, age, occupation, and zip
code. R&C is used to predict consumer ratings given to
different restaurants [50], and it includes 1,161 ratings (we use
the rating of overall quality rather than food quality or service
quality) by 138 profiles on 130 restaurants, with 21 attributes
of each user, including drink level, birth year, personality,
etc. Unlike ML-100K, the rating values in R&C is {0, 1, 2}
where 2 means the user likes this restaurant, 0 means unlike,
and 1 means general. To distinguish with lack of ratings,
we convert rating score 0 to 1, 1 to 3, and 2 to 5 (considering
that 5 in ML-100K means the user likes this item and 1 means
unlike). After preprocessing, these private attributes constitute
the condition constraints for each user when we train the
condition version of HRGAN (c.f. Section V-E.2).

2) Baseline Attacks and Detection Methods: We com-
pare RecUP with attacks mentioned in Section II-A and
Table I as baselines, including Random [13], Average [13],
Bandwagon [28], PGA [14], SGLD [14], S-TNA-Inf [8],
U-TNA [8], DCGAN [7] and AUSH [9]. In addition, we also
consider the case when only the template profiles are added
without masking with the generated profiles, which we refer
to as Poi-TP (poisoning attack based on template profiles) in
the following experiments.

We evaluate our attack along with baselines using two
well-known supervised detection methods: SemiSAD [18] and
PopSAD [34]. In addition, we also adopt classic classification
algorithms for detection, as commonly used in [18], [36],
including the support vector machine (SVM), the random
forest (RF), the decision tree (DT), the gradient boosting
decision tree (GBDT), Adaptive Boosting (AdaBoost), and
Gaussian Naive Bayes (GaussianNB). We calculate all the
seven features in Section III-A of normal and fake profiles.
Then, we split the results into training set (70%) and testing
set (30%), learn a binary classifier via these detection methods
based on the training set, and evaluate the binary classifier on
the testing set.

3) Evaluation Metrics: We evaluate the performance of
RecUP from two aspects: the attack effect and the unde-
tectability. We take the widely used HR@N as the evaluation
index of attack effect, where HR@N of a target item means the
fraction of normal profiles whose top-N recommendation lists
contain the target item after injecting the fake profiles. We used
F1-Score to measure the undetectability, i.e., the performance
of different attacks in face of poisoning detections. F1-Score is
a standard metric with a combination of Precision and Recall.
They are the fraction of the predicted true attackers to the
predicted attackers and true attackers.

4) Experiment Settings: In the experiment, we take the
matrix factorization based RS as our targeted recommender,
for the convenience of comparing the performance of different
attack methods, where we use the factorization based collabo-
rative filtering algorithm [14] to calculate the loss function in
the training process. To evaluate the performance of RecUP,
we use a workstation equipped with an AMD Ryzen 7 3700X
CPU and NVIDIA GeForce GTX 1080 Ti graphic card for
executing deep learning applications. We use Pytorch 1.6.0 as
the deep learning framework and define networks for HRGAN.
We use Adam [51] for optimization. Both of generator and
discriminator of HRGAN have 3 hidden layers, the output
layer size is the number of all items for the generator.

We use the following default parameter settings unless
otherwise specified: both the learning rate for G and D, μG

and μD , are 0.0002; the minibatch size is 32; stepG = 5,
stepD = 2; the number of adversarial training epochs is 50;
attack size is set to 5%. We select target items randomly
from all items whose average predicted ratings are around
0.8, as in [14], and N = 10 when computing HR@N (i.e.,
top-10 recommendation). Note that we do not set a certain
value for the profile size (or the filler size), as we take the
selected normal profiles as the template to mask our generated
profiles. This operation ensures that the profile size of our final
generated profile is of the same size as that of the normal user.
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TABLE II

DATASET STATISTICS

TABLE III

FILTERING COLD-START PROFILES IN CIAODVD

We set the training/test split as 7/3, which means 70% for
training and the rest 30% for testing in all feature vectors.
We report the average attack performance of three tests on
datasets, and we highlight the best performance in each dataset
for each attack size.

B. Warming-Up Experiments

1) Filtering Cold-Start Profiles: As pointed out in [9], [14],
[25], cold-start profiles (i.e., those with few items) are too
vulnerable, because there is usually insufficient information to
produce reasonable recommendation to users. So we conduct
experiments on CiaoDVD dataset, considering that its density
is the lowest in Table II. The density here is obtained by
dividing the total number of users’ rating scores by the size
of the rating matrix, and we increase the density by filter
profiles with items less than a ratings. With the increment
of the density, the performance of attack (HR@10) increases,
as shown in Table III. This is because the higher density
means fewer cold-start profiles, which leads to reasonable
recommendation and stable attack effect. We observe that the
satisfactory result got when the density approaches 1%. So,
we take 1% as the threshold value of density to determine
whether we need to filter a dataset to be attacked. To get better
attack performance (e.g., get more reasonable recommendation
to increase credibility and raise the Hit Ratio), we filter
profiles of dataset CiaoDVD with items less than a = 6 ratings
(including those without ratings), and other datasets are not
processed.

It is also noticed that a denser dataset might be more robust
against attacks under some circumstances [52]. The attack
effect of different datasets cannot be determined simply by the
density of datasets, considering that there are so many data
characteristics that can affect the effectiveness of an attack,
such as the data density, the shape of user-item matrix rating
matrix, the rating mean and the rating variance. We believe

Fig. 4. Attack performance on ML-100K with different λ.

that more work is needed to explore the relation between a
sparser dataset and the stability of the attack effect.

2) Choice of Coefficient λ: As shown in Equation (15),
we employ the coefficient λ to trade off the impact of different
parts of the objective function. When λ is set to zero, it means
we do not care about the impact of the attacker’s goal. On the
other hand, if we set λ to one, we actually do not care whether
the generated profiles can be recognized by the discriminator.
To choose a proper value of λ, we generate fake profiles with
different values of λ and test their performance on both attack
effect and its undetectability. As can be seen in Fig. 4, different
values of λ do not seem to make much difference to the results
of the poisoning attack, except λ = 0. The principal reason
is that when λ comes to zero, it means we do not include
the loss function that approximates the purpose of poisoning
attack in our framework (c.f. Fig. 2). As a result, the attack
effect is far from satisfactory (c.f. Fig. 4) despite its good
performance against detection methods (c.f. Fig. 5). When
taking into consideration our attack purpose with the same
weight as the need to avoid identification by discriminator
(λ = 0.5), the performance is better on the whole. Therefore,
we set λ = 0.5 in the following experiments unless otherwise
stated.

C. Performance of RecUP

1) Attack Performance: Our goal is to promote the target
item i tg to as many normal profiles as possible and maximize
the HR@10. We first investigate the attack performance of
RecUP and compare it with other baselines on four datasets:
ML-100K, FilmTrust, CiaoDVD and R&C. We select the
target item as in [14] and consider the result of the top-10
recommendation list for each user.

We can see from the results in Table IV that, RecUP can
effectively promote the target items with different attack sizes
of fake profiles. Compared to other attacks, RecUP generally
achieves better attack performance in ML-100K, FilmTrust
and R&C. In CiaoDVD, RecUP’s performance also maintains
at a relatively high level. The main reason is that we consider
the purpose of poisoning attack in our framework and enhance
the attack performance by feeding template profiles with high
attack power. It is worth mentioning that the results shown in
Table IV are the mean values of three tests. Due to the space
limit, we do not report the standard deviation of those results.
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Fig. 5. Attack detection on ML-100K with different values of λ.

TABLE IV

ATTACK PERFORMANCE WITH DIFFERENT ATTACK SIZES

According to our experimental results, the standard deviation
of the attack performance remains at an acceptable level, while
the standard deviation increases with the increase of the attack
size. There is no significant relationship between the standard
deviation of different datasets or different attack methods.

2) Performance Against Attack Detection: Some service
providers could arm the RS with certain fake-user detection
methods to minimize the risk of the potential poison attack.
Attackers achieve their goal by injecting malicious profiles,
meanwhile, those malicious profiles faced with be detected
by detection methods. We apply some detection methods on
the injected profiles generated by different attack methods and
report the fake profiles’ detection results in Figs. 6∼8.

Specifically, we use seven features (c.f. Table I) extracted
from each user’s ratings to train the detection classifiers. Fig. 6
depicts the detection results w.r.t. F1 Score on ML-100K,

while Figs. 7 and 8 depict the FPR (False Positive Rate, which
means the fraction of normal profiles that are predicted to
be malicious profiles) and FNR (False Negative Rate, which
means the fraction of malicious profiles that are predicted to
be normal profiles), respectively. We can observe that RecUP
performs the best against all the detection methods. The reason
is that, the features of the fake profiles generated by RecUP act
in a plausible manner as the normal profiles; thus the generated
fake profiles are difficult for the detectors to recognize.

As shown in Fig. 7 and Fig. 8, RecUP achieves significantly
higher values compared to other attacks, indicating that the
profiles generated by RecUP are more indistinguishable from
normal profiles. It is also noted that some of results shown in
Figs. 7 and 8 are zero, which means that the profiles generated
are accurately detected by the particular detection method.
This is because that the features of these generated profiles
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Fig. 6. Attack detection w.r.t. F1 Score on ML-100K with different attack methods.

Fig. 7. Attack detection w.r.t. False Positive Rate (FPR) on ML-100K with different attack methods.

Fig. 8. Attack detection w.r.t. False Negative Rate (FNR) on ML-100K with different attack methods.

are significantly different from those of the normal users,
yielding them being detected much easily. For other attacks,
as revealed in Section III-B, they cannot cover all the features
at the same time, so it is more detectable by the detectors. The

results further verify the undetectability of RecUP to generate
inconspicuous injections in poisoning attacks.

Compared with other methods, RecUP generally achieves
satisfactory attack performance in most cases, and the attack
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TABLE V

PERFORMANCE OF DIFFERENT COMPONENTS IN RECUP

performance of RecUP is even far better than other attack
methods when faced with elaborated detections.

D. Impact of Components in RecUP

In this section, we evaluate how much each component of
RecUP can contribute to the attack effect. As shown in Fig. 2,
we split our framework into two component (HRGAN+Gen):
(1) The GAN-based module with the loss function that approx-
imates Hit Ratio (HRGAN); and (2) The generator module
that generates plausible profiles based on selected potentially
powerful profiles (Gen).

We remove or change some components of RecUP and
investigate the performance changes as shown in Table V.
We remove the loss function that approximates Hit Ratio of
HRGAN module (GAN+Gen) or generate plausible profiles
just based on randomly selected normal profiles (HRGAN).
The results indicate that both the potentially powerful profiles
selection and the loss function contribute significantly to the
attack effect. This is largely because that the loss function
plays an important role in generating plausible profiles and
the attack performance benefits greatly from the potentially
powerful profiles selection.

To measure the contribution of the network structure of
HRGAN, we evaluate this component by changing different
network structure to train the generator. We select two suc-
cessful cases as the template of our module to generate fake
profiles, from recent literature [46], [53] about applying GAN
to the RS. HRCoT means we add the loss function that approx-
imates Hit Ratio when we train CoT [53]. Consider a more
robust version than general GAN, Wasserstein GAN gradient
penalty [54] that is further adapted to learn the distribution
of predictions of the augmented training data, we directly
add the gradient penalty into the training (HRGAN_GP). All
three variations of GAN adopt the masking when we generate
the fake profiles. As we can see, the best performance when
faced with detection methods just appears when we apply the
HRGAN+Gen, while applying the HRGAN_GP+Gen gets the
best results in HR@10. We believe that the main reason is
that the gradient penalty helps the generator generate better
profiles [54].

E. Impact of Attacker’s Knowledge

1) Impact of Partial Knowledge: In this section, we con-
sider the case where the attacker has access to only a subset
of profiles. We construct the subset of profiles by randomly
selected from all profiles one by one until we reach the size

Fig. 9. Attack performance on ML-100K with different sizes of available
profiles.

TABLE VI

ATTACK PERFORMANCE WITH CONDITIONS

of available profiles. Fig. 9 shows the attack results when
the attacker observes different amounts of normal profiles
with different attack sizes. Note that in the partial-knowledge
attack, we select potentially powerful profiles and generate
fake profiles based on only the available profiles. Naturally,
we observe that the attack performance improves when the
attacker has access to more normal profiles. This is reasonable
as more profiles lead to more desirable recommendations,
which further yields better attack effect. When we only have
access to a subset of profiles rather than all, we find that in
some cases RecUP even outperforms baseline attacks that have
all ratings, compared with the results in Table IV. As the
detection performance is similar with the results in Fig. 6,
we do not show the results here.

2) Impact of Extra Knowledge: In this section, we consider
the case where the attacker knows extra user-specific attributes
(such as gender and age, etc.). These attributes could help
the generator to capture complex user-item associations better
than without them. To add the attributes into our framework,
we take it as the condition constraint when we train the
generator networks (cHRGAN), in a similar manner as the
condition GAN (cGAN) [55]. The attack and defense perfor-
mance on ML-100K and R&C are shown in Table VI and
Table VII, respectively.
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TABLE VII

ATTACK DETECTION WITH CONDITIONS

In general, we have better performance in Table VII and
worse results in Table VI when we add the condition into
the training. Compared with the results when we do not
know user attributes, the additional condition leads to more
plausible profiles. We believe that these attributes could help
the generator to better capture complex user-item associations,
thereby yielding better results in Table VII and though some
reduction in attack effect. More ‘normal’ generated profiles are
harder to detect, especially in the R&C dataset, whose profiles
with 19 attributes far more than 4 attributes in ML-100K. That
is why the difference made by the conditional results in the
R&C dataset is more significant, as we can see in Table VII.
The results suggest that better performance can be achieved if
more knowledge (like users’ attributes) of the target RS can
be obtained.

VI. CONCLUSION

In this paper, we have presented RecUP, a novel poisoning
attack framework that can craft plausible profiles to escape the
detection. Our key idea is simulating the features of normal
profiles based on a mini-max game with GAN. We additionally
employ a shilling loss to achieve the attacker’s desires. Instead
of using all normal profiles to optimize ratings of fake profiles,
we use a selected subset of potentially powerful profiles to
further enhance the attack effect. We conduct extensive exper-
imental studies to validate the effectiveness and superiority
of RecUP, in terms of both the attack performance and the
escape ability from detections. In the future, we plan to explore
effective countermeasures against our attack.
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